![湖南省长沙市明德天心中学2022年中考数学四模试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13531482/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省长沙市明德天心中学2022年中考数学四模试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13531482/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省长沙市明德天心中学2022年中考数学四模试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13531482/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖南省长沙市明德天心中学2022年中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )
A.305.5×104 B.3.055×102 C.3.055×1010 D.3.055×1011
2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是( )
A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
3.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )
A.50° B.60° C.70° D.80°
4.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )
A.5 B.10 C.10 D.15
5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
A. B.
C. D.
6.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为( )
A.x<2 B.x>2 C.x<5 D.x>5
7.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( )
A.16 B.17 C.18 D.19
8.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )
A.40° B.45° C.50° D.55°
9.对于两组数据A,B,如果sA2>sB2,且,则( )
A.这两组数据的波动相同 B.数据B的波动小一些
C.它们的平均水平不相同 D.数据A的波动小一些
10.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为( )元.(精确到百亿位)
A.2×1011 B.2×1012 C.2.0×1011 D.2.0×1010
二、填空题(共7小题,每小题3分,满分21分)
11.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.
12.已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为_____.
13.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.
14.计算:a6÷a3=_________.
15.分解因式:xy2﹣2xy+x=_____.
16.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.
17.计算:
(1)()2=_____;
(2) =_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.
(1)求直线的表达式;
(2)若直线与矩形有公共点,求的取值范围;
(3)直线与矩形没有公共点,直接写出的取值范围.
19.(5分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
20.(8分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
(1)求证:AO=EO;
(2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.
21.(10分)计算:
(1)﹣12018+|﹣2|+2cos30°;
(2)(a+1)2+(1﹣a)(a+1);
22.(10分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.
(1)当y1﹣y2=4时,求m的值;
(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).
23.(12分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
(1)求日均销售量p(桶)与销售单价x(元)的函数关系;
(2)若该经营部希望日均获利1350元,那么销售单价是多少?
24.(14分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
解:305.5亿=3.055×1.故选C.
2、C
【解析】
∵∠C=90°,
∴cosA=,sinA= ,tanA=,cotA=,
∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
∴只有选项C正确,
故选C.
【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
3、C
【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,
∴OM2+ON2=MN2,
∴∠MON=90°,
∵∠EOM=20°,
∴∠NOF=180°﹣20°﹣90°=70°.
故选C.
【点睛】
本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.
4、B
【解析】
作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,
∵AE=CG,BE=BE′,
∴E′G′=AB=10,
∵GG′=AD=5,
∴E′G=,
∴C四边形EFGH=2E′G=10,
故选B.
【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.
5、B
【解析】
设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
【详解】
解:设大马有匹,小马有匹,由题意得:
,
故选:B.
【点睛】
本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
6、C
【解析】
根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.
【详解】
解:∵一次函数y=kx﹣b经过点(2,0),
∴2k﹣b=0,b=2k.
函数值y随x的增大而减小,则k<0;
解关于k(x﹣3)﹣b>0,
移项得:kx>3k+b,即kx>1k;
两边同时除以k,因为k<0,因而解集是x<1.
故选C.
【点睛】
本题考查一次函数与一元一次不等式.
7、A
【解析】
一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.
故选A.
【点睛】
此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.
8、D
【解析】
试题分析:如图,
连接OC,
∵AO∥DC,
∴∠ODC=∠AOD=70°,
∵OD=OC,
∴∠ODC=∠OCD=70°,
∴∠COD=40°,
∴∠AOC=110°,
∴∠B=∠AOC=55°.
故选D.
考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
9、B
【解析】
试题解析:方差越小,波动越小.
数据B的波动小一些.
故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
10、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
2000亿元=2.0×1.
故选:C.
【点睛】
考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(共7小题,每小题3分,满分21分)
11、2
【解析】
设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
【详解】
作MG⊥DC于G,如图所示:
设MN=y,PC=x,
根据题意得:GN=2,MG=|10-1x|,
在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
即y1=21+(10-1x)1.
∵0<x<10,
∴当10-1x=0,即x=2时,y1最小值=12,
∴y最小值=2.即MN的最小值为2;
故答案为:2.
【点睛】
本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
12、1
【解析】
设另一根为x2,根据一元二次方程根与系数的关系得出-1•x2=-1,即可求出答案.
【详解】
设方程的另一个根为x2,
则-1×x2=-1,
解得:x2=1,
故答案为1.
【点睛】
本题考查了一元二次方程根与系数的关系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=-,x1x2=.
13、14s或38s.
【解析】
试题解析:分两种情况进行讨论:
如图:
旋转的度数为:
每两秒旋转
如图:
旋转的度数为:
每两秒旋转
故答案为14s或38s.
14、a1
【解析】
根据同底数幂相除,底数不变指数相减计算即可
【详解】
a6÷a1=a6﹣1=a1.故答案是a1
【点睛】
同底数幂的除法运算性质
15、x(y-1)2
【解析】
分析:先提公因式x,再用完全平方公式把继续分解.
详解:
=x()
=x()2.
故答案为x()2.
点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.
16、1
【解析】
∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,
∴第7个数是1分,
∴中位数为1分,
故答案为1.
17、
【解析】
(1)直接利用分式乘方运算法则计算得出答案;
(2)直接利用分式除法运算法则计算得出答案.
【详解】
(1)()2=;
故答案为;
(2) ==.
故答案为.
【点睛】
此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
三、解答题(共7小题,满分69分)
18、(1);(2);(3)
【解析】
(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;
(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;
(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.
【详解】
解:
(1)
,
设直线表达式为,
,解得
直线表达式为;
(2) 直线可以看到是由直线平移得到,
当直线过时,直线与矩形有一个公共点,如图1,
当过点时,代入可得,解得.
当过点时,可得
直线与矩形有公共点时,的取值范围为;
(3) ,
直线过,且,
如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,
当过点时,代入可得,解得
直线:与矩形没有公共点时的取值范围为
【点睛】
本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.
19、(1)50;(2)108°;(3).
【解析】
分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.
点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
20、(1)详见解析;(2)平行四边形.
【解析】
(1)由“三线合一”定理即可得到结论;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.
【详解】
证明:(1)∵BD平分∠ABC,AE⊥BD,
∴AO=EO;
(2)平行四边形,
证明:∵AD∥BC,
∴∠ADB=∠ABD,
∴AD=AB,
∵OA=OE,OB⊥AE,
∴AB=BE,
∴AD=BE,
∵BE=CE,
∴AD=EC,
∴四边形AECD是平行四边形.
【点睛】
考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
21、 (1)1;(2)2a+2
【解析】
(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;
(2)先化简原式,然后将x的值代入原式即可求出答案.
【详解】
解:(1)原式=﹣1+2﹣+2×=1;
(2)原式=a2+2a+1+1﹣a2=2a+2.
【点睛】
本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
22、(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).
【解析】
(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解
析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;
(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标.
【详解】
解:(1)设反比例函数的解析式为y=,
∵反比例函数的图象经过点A(﹣4,﹣3),
∴k=﹣4×(﹣3)=12,
∴反比例函数的解析式为y=,
∵反比例函数的图象经过点B(2m,y1),C(6m,y2),
∴y1==,y2==,
∵y1﹣y2=4,
∴﹣=4,
∴m=1,
经检验,m=1是原方程的解,
故m的值是1;
(2)设BD与x轴交于点E,
∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,
∴D(2m,),BD=﹣=,
∵三角形PBD的面积是8,
∴BD•PE=8,
∴••PE=8,
∴PE=4m,
∵E(2m,1),点P在x轴上,
∴点P坐标为(﹣2m,1)或(6m,1).
【点睛】
本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.
23、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.
【解析】
(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;
【详解】
(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,
根据题意得,
解得k=﹣50,b=850,
所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;
(2)根据题意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,
解得x1=9,x2=13(不合题意,舍去),
∵销售单价不得高于12元/桶,也不得低于7元/桶,
∴x=13不合题意,
答:若该经营部希望日均获利1350元,那么销售单价是9元.
【点睛】
本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.
24、2.7米
【解析】
解:作BF⊥DE于点F,BG⊥AE于点G
在Rt△ADE中
∵tan∠ADE=,
∴DE="AE" ·tan∠ADE=15
∵山坡AB的坡度i=1:,AB=10
∴BG=5,AG=,
∴EF=BG=5,BF=AG+AE=+15
∵∠CBF=45°
∴CF=BF=+15
∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7
答:这块宣传牌CD的高度为2.7米.
2023-2024学年湖南省长沙市明德天心中学七年级(上)学期期末数学试题(含解析): 这是一份2023-2024学年湖南省长沙市明德天心中学七年级(上)学期期末数学试题(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖南省长沙市天心区湘郡培粹实验中学中考数学三模试卷(含解析): 这是一份2023年湖南省长沙市天心区湘郡培粹实验中学中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省长沙市长沙明德中学2022年中考联考数学试卷含解析: 这是一份湖南省长沙市长沙明德中学2022年中考联考数学试卷含解析,共18页。试卷主要包含了已知抛物线y=x2+,如图,,,则的大小是等内容,欢迎下载使用。