河南省郑州市^&重点达标名校2022年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列事件中,属于必然事件的是( )
A.三角形的外心到三边的距离相等
B.某射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是 180°
D.抛一枚硬币,落地后正面朝上
2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105
3.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )
A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
4.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
5.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()
A.个 B.个 C.个 D.个
6.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )
A.国 B.厉 C.害 D.了
7.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )
A.2 B.-2 C.±2 D.-
8.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
A. B. C. D.
9.下列各式中,计算正确的是 ( )
A. B.
C. D.
10.下列事件中为必然事件的是( )
A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起
C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹
11.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为( )
A. B. C.10 D.
12.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )
A.55×105 B.5.5×104 C.0.55×105 D.5.5×105
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
14.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.
15.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
16.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.
17.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1+S2+S3+…+Sn=_____(用含n的代数式表示)
18.关于x的不等式组的整数解共有3个,则a的取值范围是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.
20.(6分)如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.
若∠AOD=45°,求证:CE=ED;(2)若AE=EO,求tan∠AOD的值.
21.(6分)已知:如图.D是的边上一点,,交于点M,.
(1)求证:;
(2)若,试判断四边形的形状,并说明理由.
22.(8分)解不等式组: .
23.(8分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB:
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长
24.(10分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组
频数
频率
50≤x<60
8
0.16
60≤x<70
12
a
70≤x<80
■
0.5
80≤x<90
3
0.06
90≤x≤100
b
c
合计
■
1
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.
25.(10分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:
请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人.
26.(12分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.
(1)求二次函数的关系式及点C的坐标;
(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;
(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.
27.(12分)先化简,再求值:,其中.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
分析:必然事件就是一定发生的事件,依据定义即可作出判断.
详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、三角形的内角和是180°,是必然事件,故本选项符合题意;
D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
故选C.
点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、A
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2180000的小数点向左移动6位得到2.18,
所以2180000用科学记数法表示为2.18×106,
故选A.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、D
【解析】
由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
【详解】
解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
故选D.
【点睛】
本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
4、A
【解析】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故选:A.
5、D
【解析】
求出不等式组的解集,根据已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.
【详解】
解不等式2x−a≥0,得:x≥,
解不等式3x−b≤0,得:x≤,
∵不等式组的整数解仅有x=2、x=3,
则1<≤2、3≤<4,
解得:2<a≤4、9≤b<12,
则a=3时,b=9、10、11;
当a=4时,b=9、10、11;
所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,
故选:D.
【点睛】
本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.
6、A
【解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
∴有“我”字一面的相对面上的字是国.
故答案选A.
【点睛】
本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.
7、B
【解析】
根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.
【详解】
由题意得:m2-3=1,且m+1<0,
解得:m=-2,
故选:B.
【点睛】
此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.
8、C
【解析】
根据反比例函数的图像性质进行判断.
【详解】
解:∵,电压为定值,
∴I关于R的函数是反比例函数,且图象在第一象限,
故选C.
【点睛】
本题考查反比例函数的图像,掌握图像性质是解题关键.
9、C
【解析】
接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【详解】
A、无法计算,故此选项错误;
B、a2•a3=a5,故此选项错误;
C、a3÷a2=a,正确;
D、(a2b)2=a4b2,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
10、B
【解析】
分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:
A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;
B、早晨的太阳从东方升起,是必然事件,故本选项正确;
C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;
D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.
故选B.
11、D
【解析】
如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.
【详解】
如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,
则∠1=∠2,
∵=2,
∴△APD∽△ABP′,
∴BP′=2PD,
∴2PD+PB=BP′+PB≥PP′,
∴PP′=,
∴2PD+PB≥4,
∴2PD+PB的最小值为4,
故选D.
【点睛】
本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
12、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将度55000用科学记数法表示为5.5×1.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、0
【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.
【详解】把点(12,﹣5)代入直线y=kx得,
﹣5=12k,
∴k=﹣;
由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),
设直线l与x轴、y轴分别交于点A、B,(如图所示)
当x=0时,y=m;当y=0时,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=,
过点O作OD⊥AB于D,
∵S△ABO=OD•AB=OA•OB,
∴OD•=×m×m,
∵m>0,解得OD=m,
由直线与圆的位置关系可知m <6,解得m<,
故答案为0
【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.
14、1.
【解析】
先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.
【详解】
∵
∴
又∵∠A=∠A,
∴△ABC∽△AED,
∴
∵BC=30,
∴DE=1,
故答案为1.
【点睛】
考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
15、
【解析】
分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
详解:∵平均数是12,
∴这组数据的和=12×7=84,
∴被墨汁覆盖三天的数的和=84−4×12=36,
∵这组数据唯一众数是13,
∴被墨汁覆盖的三个数为:10,13,13,
故答案为
点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
16、1.
【解析】
解:设圆锥的底面圆半径为r,
根据题意得1πr=,
解得r=1,
即圆锥的底面圆半径为1cm.
故答案为:1.
【点睛】
本题考查圆锥的计算,掌握公式正确计算是解题关键.
17、10﹣
【解析】
过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案.
【详解】
如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,
则点Pn+1的坐标为(2n+2,),
则OB=,
∵点P1的横坐标为2,
∴点P1的纵坐标为5,
∴AB=5﹣,
∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,
故答案为10﹣.
【点睛】
本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.
18、
【解析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解:由不等式①得:x>a,由不等式②得:x<1,所以不等式组的解集是a<x<1.
∵关于x的不等式组的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.
故答案为:﹣3≤a<﹣2.
【点睛】
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.
【解析】
试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.
试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,
从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,
所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,
x的取值范围是30≤x≤1.
(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,
当x=1时,y=﹣8×1+2560=1920,
此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.
考点:一次函数的应用.
20、(1)见解析;(2)tan∠AOD=.
【解析】
(1)作DF⊥AB于F,连接OC,则△ODF是等腰直角三角形,得出OC=OD=DF,由垂径定理得出∠COE=90°,证明△DEF∽△CEO得出,即可得出结论;
(2)由题意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,设⊙O的半径为2a(a>0),则OD=2a,EO=a,设EF=x,则DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函数定义即可得出结果.
【详解】
(1)证明:作DF⊥AB于F,连接OC,如图所示:
则∠DFE=90°,
∵∠AOD=45°,
∴△ODF是等腰直角三角形,
∴OC=OD=DF,
∵C是弧AB的中点,
∴OC⊥AB,
∴∠COE=90°,
∵∠DEF=∠CEO,
∴△DEF∽△CEO,
∴,
∴CE=ED;
(2)如图所示:
∵AE=EO,
∴OE=OA=OC,
同(1)得:,△DEF∽△CEO,
∴,
设⊙O的半径为2a(a>0),则OD=2a,EO=a,
设EF=x,则DF=2x,
在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,
解得:x=a,或x=﹣a(舍去),
∴DF=a,OF=EF+EO=a,
∴.
【点睛】
本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键.
21、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.
【解析】
(1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN是平行四边形即可;
(2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.
【详解】
证明:(1)∵CN∥AB,
∴∠DAM=∠NCM,
∵在△AMD和△CMN中,
∠DAM=∠NCM
MA=MC
∠DMA=∠NMC,
∴△AMD≌△CMN(ASA),
∴AD=CN,
又∵AD∥CN,
∴四边形ADCN是平行四边形,
∴CD=AN;
(2)解:四边形ADCN是矩形,
理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC,
∴MD=MC,
由(1)知四边形ADCN是平行四边形,
∴MD=MN=MA=MC,
∴AC=DN,
∴四边形ADCN是矩形.
【点睛】
本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.
22、x<2.
【解析】
试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.
试题解析:,
由①得:x<3,
由②得:x<2,
∴不等式组的解集为:x<2.
23、(1)见解析;(2)2 (3)1
【解析】
(1)通过证明∠BED=∠DBE得到DB=DE;
(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
(3)证明△DBF∽△ADB,然后利用相似比求AD的长.
【详解】
(1)证明:∵AD平分∠BAC,BE平分∠ABD,
∴∠1=∠2,∠3=∠4,
∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
∴DB=DE;
(2)解:连接CD,如图,
∵∠BAC=10°,
∴BC为直径,
∴∠BDC=10°,
∵∠1=∠2,
∴DB=BC,
∴△DBC为等腰直角三角形,
∴BC=BD=4,
∴△ABC外接圆的半径为2;
(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
∴△DBF∽△ADB,
∴=,即=,
∴AD=1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
24、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.
【解析】
(1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;
(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;
(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.
【详解】
解:(1)样本人数为:8÷0.16=50(名)
a=12÷50=0.24,
70≤x<80的人数为:50×0.5=25(名)
b=50﹣8﹣12﹣25﹣3=2(名)
c=2÷50=0.04
所以a=0.24,b=2,c=0.04;
(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:
1000×0.6=600(人)
∴这1000名学生中有600人的竞赛成绩不低于70分;
(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B
从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:
抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,
∴抽取的2名同学来自同一组的概率P==
【点睛】
本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.
25、(1)图形见解析;(2)1;(3)1.
【解析】
(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;
(2)根据众数的定义求解可得;
(3)用总人数乘以样本中D和E人数占总人数的比例即可得.
【详解】
解:(1)∵被调查的总人数为20÷20%=100(人),
则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),
补全图形如下:
(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,
故答案为1;
(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000× =1(人),
故答案为1.
【点睛】
此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.
26、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).
【解析】
(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;
(2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.
(3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.
【详解】
解:(1)令y==0,得:x=4,∴A(4,0).
令x=0,得:y=-2,∴B(0,-2).
∵二次函数y=的图像经过A、B两点,
∴,解得:,
∴二次函数的关系式为y=.
令y==0,解得:x=1或x=4,∴C(1,0).
(2)∵PD∥x轴,PE∥y轴,
∴∠PDE=∠OAB,∠PED=∠OBA,
∴△PDE∽△OAB.∴===2,
∴PD=2PE.设P(m,),
则E(m,).
∴PD+PE=3PE=3×[()-()]==.
∵0<m<4,∴当m=2时,PD+PE有最大值3.
(3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.
∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).
∴=,解得:t=2,
∴圆心O1的坐标为(,-2),∴半径为.
设M(,y).∵MO1=,∴,
解得:y=,∴点M的坐标为().
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.
∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,
∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为 (,0),∴O2D=1,
∴DM==,∴点M的坐标为(,).
综上所述:点M的坐标为(,)或(,).
点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.
27、-1, -9.
【解析】
先去括号,再合并同类项;最后把x=-2代入即可.
【详解】
原式=,
当x=-2时,原式=-8-1=-9.
【点睛】
本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.
河南省周口市郸城县重点达标名校2021-2022学年中考数学押题试卷含解析: 这是一份河南省周口市郸城县重点达标名校2021-2022学年中考数学押题试卷含解析,共18页。
2022年河南省驻马店市重点达标名校中考押题数学预测卷含解析: 这是一份2022年河南省驻马店市重点达标名校中考押题数学预测卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,﹣6的倒数是,如图,AB∥CD,那么等内容,欢迎下载使用。
2022届云南省、贵州省重点达标名校中考数学押题试卷含解析: 这是一份2022届云南省、贵州省重点达标名校中考数学押题试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列几何体是棱锥的是,下列各数中比﹣1小的数是,下列图形不是正方体展开图的是等内容,欢迎下载使用。