|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北石家庄市长安区达标名校2022年毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    河北石家庄市长安区达标名校2022年毕业升学考试模拟卷数学卷含解析01
    河北石家庄市长安区达标名校2022年毕业升学考试模拟卷数学卷含解析02
    河北石家庄市长安区达标名校2022年毕业升学考试模拟卷数学卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北石家庄市长安区达标名校2022年毕业升学考试模拟卷数学卷含解析

    展开
    这是一份河北石家庄市长安区达标名校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列几何体是棱锥的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程(  )
    A. B.
    C. +4=9 D.
    2.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )
    A. B.
    C. D.
    3.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )
    A.1 B.2 C.5 D.6
    4.在函数y=中,自变量x的取值范围是( )
    A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1
    5.下列几何体是棱锥的是( )
    A. B. C. D.
    6.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为(  )

    A. B. C. D.
    7.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是


    A.① B.④ C.②或④ D.①或③
    8.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是(   )

    A.a     B.b   C. D.
    9.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为(  )

    A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)
    10.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是(  )

    A.70° B.80° C.110° D.140°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.

    12.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.
    13.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.

    14.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
    15.4是_____的算术平方根.
    16.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF

    三、解答题(共8题,共72分)
    17.(8分)解下列不等式组:
    18.(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
    (1)A、B两点之间的距离是   米,甲机器人前2分钟的速度为   米/分;
    (2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
    (3)若线段FG∥x轴,则此段时间,甲机器人的速度为   米/分;
    (4)求A、C两点之间的距离;
    (5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.

    19.(8分)填空并解答:
    某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.
    (1)问哪一位“新顾客”是第一个不需要排队的?
    分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.

    a1
    a2
    a3
    a4
    a5
    a6
    c1
    c2
    c3
    c4

    到达窗口时刻
    0
    0
    0
    0
    0
    0
    1
    6
    11
    16

    服务开始时刻
    0
    2
    4
    6
    8
    10
    12
    14
    16
    18

    每人服务时长
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2

    服务结束时刻
    2
    4
    6
    8
    10
    12
    14
    16
    18
    20

    根据上述表格,则第   位,“新顾客”是第一个不需要排队的.
    (2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.
    分析:第n个“新顾客”到达窗口时刻为   ,第(n﹣1)个“新顾客”服务结束的时刻为   .
    20.(8分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.
    (1)求证:△ABD是等边三角形;
    (2)若BD=3,求⊙O的半径.

    21.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
    请根据图中提供的信息,回答下列问题:a=   %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?

    22.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,

    (1)求证:AF=DC;
    (2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
    23.(12分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.

    24.在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.
    (1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是   ;
    (2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;
    (3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.
    【详解】
    ∵轮船在静水中的速度为x千米/时,
    ∴顺流航行时间为:,逆流航行时间为:,
    ∴可得出方程:,
    故选:A.
    【点睛】
    本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.
    2、A
    【解析】
    分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.
    详解:设他上月买了x本笔记本,则这次买了(x+20)本,
    根据题意得:.
    故选A.
    点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.
    3、C
    【解析】
    分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.
    详解:∵数据1,2,x,5,6的众数为6,
    ∴x=6,
    把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,
    则这组数据的中位数为5;
    故选C.
    点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.
    4、C
    【解析】
    根据分式和二次根式有意义的条件进行计算即可.
    【详解】
    由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.
    故x的取值范围是x≥2且x≠2.
    故选C.
    【点睛】
    本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.
    5、D
    【解析】
    分析:根据棱锥的概念判断即可.
    A是三棱柱,错误;
    B是圆柱,错误;
    C是圆锥,错误;
    D是四棱锥,正确.
    故选D.
    点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
    6、C
    【解析】
    过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可.
    【详解】
    解:如图,过点A作AF⊥DE于F,

    在矩形ABCD中,AB=CD,
    ∵AE平分∠BED,
    ∴AF=AB,
    ∵BC=2AB,
    ∴BC=2AF,
    ∴∠ADF=30°,
    在△AFD与△DCE中
    ∵∠C=∠AFD=90°,
    ∠ADF=∠DEC,
    AF=DC,,
    ∴△AFD≌△DCE(AAS),
    ∴△CDE的面积=△AFD的面积=
    ∵矩形ABCD的面积=AB•BC=2AB2,
    ∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2﹣)AB2,
    ∴△ABE的面积=,
    ∴,
    故选:C.
    【点睛】
    本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.
    7、D
    【解析】
    分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
    【详解】
    解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
    故选D.
    8、D
    【解析】
    ∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.
    ∴<a<b< ,
    故选D.
    9、D
    【解析】
    分析:作BC⊥x轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A′与点B重合,于是可得点A′的坐标.
    详解:作BC⊥x轴于C,如图,

    ∵△OAB是边长为4的等边三角形

    ∴A点坐标为(−4,0),O点坐标为(0,0),
    在Rt△BOC中,
    ∴B点坐标为
    ∵△OAB按顺时针方向旋转,得到△OA′B′,

    ∴点A′与点B重合,即点A′的坐标为
    故选D.
    点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.
    10、C
    【解析】
    分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.
    详解:作对的圆周角∠APC,如图,

    ∵∠P=∠AOC=×140°=70°
    ∵∠P+∠B=180°,
    ∴∠B=180°﹣70°=110°,
    故选:C.
    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、3﹣1
    【解析】
    通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
    【详解】
    如图,当Q在对角线BD上时,BQ最小.
    连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
    ∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).

    故答案为3﹣1.
    【点睛】
    本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.
    12、3×1
    【解析】
    因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:
    600×50=30 000,用科学记数法表示为3×1立方米.
    故答案为3×1.
    13、1
    【解析】
    【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.
    【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,
    ∵点D、E分别是边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,且DE=BC,
    ∴△ADE∽△ABC,
    则=,即,
    解得:x=1,
    即四边形BCED的面积为1,
    故答案为1.
    【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.
    14、
    【解析】
    根据随机事件概率大小的求法,找准两点:
    ①符合条件的情况数目;
    ②全部情况的总数.
    二者的比值就是其发生的概率的大小.
    【详解】
    解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
    ∴从中任意摸出一个球,则摸出白球的概率是.
    故答案为:.
    【点睛】
    本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
    15、16.
    【解析】
    试题解析:∵42=16,
    ∴4是16的算术平方根.
    考点:算术平方根.
    16、①②④
    【解析】
    试题解析:①∵F是AD的中点,
    ∴AF=FD,
    ∵在▱ABCD中,AD=2AB,
    ∴AF=FD=CD,
    ∴∠DFC=∠DCF,
    ∵AD∥BC,
    ∴∠DFC=∠FCB,
    ∴∠DCF=∠BCF,
    ∴∠DCF=∠BCD,故此选项正确;
    延长EF,交CD延长线于M,

    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠A=∠MDF,
    ∵F为AD中点,
    ∴AF=FD,
    在△AEF和△DFM中,

    ∴△AEF≌△DMF(ASA),
    ∴FE=MF,∠AEF=∠M,
    ∵CE⊥AB,
    ∴∠AEC=90°,
    ∴∠AEC=∠ECD=90°,
    ∵FM=EF,
    ∴FC=FM,故②正确;
    ③∵EF=FM,
    ∴S△EFC=S△CFM,
    ∵MC>BE,
    ∴S△BEC<2S△EFC
    故S△BEC=2S△CEF错误;
    ④设∠FEC=x,则∠FCE=x,
    ∴∠DCF=∠DFC=90°-x,
    ∴∠EFC=180°-2x,
    ∴∠EFD=90°-x+180°-2x=270°-3x,
    ∵∠AEF=90°-x,
    ∴∠DFE=3∠AEF,故此选项正确.
    考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.

    三、解答题(共8题,共72分)
    17、﹣2≤x<.
    【解析】
    先分别求出两个不等式的解集,再求其公共解.
    【详解】

    解不等式①得,x<,
    解不等式②得,x≥﹣2,
    则不等式组的解集是﹣2≤x<.
    【点睛】
    本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    18、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.
    【解析】
    (1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;
    (2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;
    (3)由图可知甲、乙速度相同;
    (4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;
    (5)分0-2分钟、2-3分钟和4-7分钟三段考虑.
    【详解】
    解:(1)由图象可知,A、B两点之间的距离是70米,
    甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
    (2)设线段EF所在直线的函数解析式为:y=kx+b,
    ∵1×(95﹣60)=35,
    ∴点F的坐标为(3,35),
    则,解得,
    ∴线段EF所在直线的函数解析式为y=35x﹣70;
    (3)∵线段FG∥x轴,
    ∴甲、乙两机器人的速度都是60米/分;
    (4)A、C两点之间的距离为70+60×7=490米;
    (5)设前2分钟,两机器人出发x分钟相距21米,
    由题意得,60x+70﹣95x=21,解得,x=1.2,
    前2分钟﹣3分钟,两机器人相距21米时,
    由题意得,35x﹣70=21,解得,x=2.1.
    4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),
    设线段GH所在直线的函数解析式为:y=kx+b,则,
    ,解得,
    则直线GH的方程为y=x+,
    当y=21时,解得x=4.6,
    答:两机器人出发1.2分或2.1分或4.6分相距21米.

    【点睛】
    本题考查了一次函数的应用,读懂图像是解题关键..
    19、(1)5;(2)5n﹣4,na+6a.
    【解析】
    (1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;
    (2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a.
    【详解】
    (1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;
    故答案为:5;
    (2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,
    ∴第n个“新顾客”到达窗口时刻为5n﹣4,
    由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,
    ∴第n个“新顾客”服务开始的时间为(6+n)a,
    ∴第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,
    ∵每a分钟办理一个客户,
    ∴第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,
    故答案为:5n﹣4,na+6a.
    【点睛】
    本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式.
    20、(1)详见解析;(2).
    【解析】
    (1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB=x,则ED=2x,根据勾股定理列方程求解即可.
    【详解】
    解:(1)∵∠BCD=120°,CA平分∠BCD,
    ∴∠ACD=∠ACB=60°,
    由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,
    ∴△ABD是等边三角形;
    (2)连接OB、OD,作OH⊥BD于H,
    则DH=BD=,
    ∠BOD=2∠BAD=120°,
    ∴∠DOH=60°,
    在Rt△ODH中,OD==,
    ∴⊙O的半径为.

    【点睛】
    本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.
    21、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
    【解析】
    (1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
    (2)根据众数和中位数的定义即可求出答案;
    (3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
    【详解】
    解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
    该扇形所对圆心角的度数为310°×10%=31°,
    参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:

    故答案为10;
    (2)抽样调查中总人数为100人,
    结合条形统计图可得:众数是5,中位数是1.
    (3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
    活动时间不少于1天的学生人数大约有5400人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    22、(1)见解析(2)见解析
    【解析】
    (1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
    (2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
    【详解】
    解:(1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE.
    ∵E是AD的中点,AD是BC边上的中线,
    ∴AE=DE,BD=CD.
    在△AFE和△DBE中,
    ∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
    ∴△AFE≌△DBE(AAS)
    ∴AF=BD.
    ∴AF=DC.
    (2)四边形ADCF是菱形,证明如下:
    ∵AF∥BC,AF=DC,
    ∴四边形ADCF是平行四边形.
    ∵AC⊥AB,AD是斜边BC的中线,
    ∴AD=DC.
    ∴平行四边形ADCF是菱形
    23、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
    【解析】
    分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
    (2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
    详解:(1)∵tan∠AOH==
    ∴AH=OH=4
    ∴A(-4,3),代入,得
    k=-4×3=-12
    ∴反比例函数为

    ∴m=6
    ∴B(6,-2)

    ∴=,b=1
    ∴一次函数为
    (2)
    △AHO的周长为:3+4+5=12
    点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
    24、(1);(2)y=x2;(3)点Q到x轴的最短距离为1.
    【解析】
    (1)先判断出m(n﹣1)=6,进而得出结论;
    (2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;
    (3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.
    【详解】
    (1)设m=x,n﹣1=y,
    ∵mn﹣m=6,
    ∴m(n﹣1)=6,
    ∴xy=6,

    ∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是
    故答案为:;
    (2)∴点P(x,y)到点A(0,1),
    ∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,
    ∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,
    ∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,
    ∴x2+(y﹣1)2=(y+1)2,

    (3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),
    ∴线段MN的中点为Q的纵坐标为

    ∴x2﹣4kx﹣4b=0,
    ∴x1+x2=4k,x1x2=﹣4b,





    ∴点Q到x轴的最短距离为1.
    【点睛】
    此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键.

    相关试卷

    重庆市忠县达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份重庆市忠县达标名校2022年毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了计算3–等内容,欢迎下载使用。

    云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了cs30°的相反数是等内容,欢迎下载使用。

    宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map