终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    河北省邢台市第八中学2022年中考数学仿真试卷含解析

    立即下载
    加入资料篮
    河北省邢台市第八中学2022年中考数学仿真试卷含解析第1页
    河北省邢台市第八中学2022年中考数学仿真试卷含解析第2页
    河北省邢台市第八中学2022年中考数学仿真试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省邢台市第八中学2022年中考数学仿真试卷含解析

    展开

    这是一份河北省邢台市第八中学2022年中考数学仿真试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,方程=的解为,一、单选题等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )

    A. B. C. D.
    2.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(   )

    A.35° B.45° C.55° D.65°
    3.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为(  )

    A.2m B. m C.3m D.6m
    4.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是(  )
    A. B.
    C. D.
    5.下列方程中,是一元二次方程的是(  )
    A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=0
    6.方程=的解为( )
    A.x=3 B.x=4 C.x=5 D.x=﹣5
    7.一、单选题
    在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的(  )
    A.平均数 B.众数 C.中位数 D.方差
    8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )

    A. B. C. D.
    9.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是(  )

    A. B. C. D.
    10.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为(  )
    A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣10
    11.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适(  )
    A.甲 B.乙 C.丙 D.丁
    12.下列运算正确的(  )
    A.(b2)3=b5 B.x3÷x3=x C.5y3•3y2=15y5 D.a+a2=a3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.一元二次方程有两个不相等的实数根,则的取值范围是________.
    14.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
    15.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).
    16.因式分解:-3x2+3x=________.
    17.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.
    18.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.
    20.(6分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.
    (1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为   (填“真”或“假”)命题,并说明理由;
    (2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;
    (3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.

    21.(6分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
    (1)求该二次函数的表达式;
    (2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;
    (3)在(2)的条件下,请解答下列问题:
    ①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;
    ②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.

    22.(8分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、、.

    求此抛物线的解析式.
    求此抛物线顶点的坐标和四边形的面积.
    23.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.

    24.(10分)我们知道中,如果,,那么当时,的面积最大为6;
    (1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
    (2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
    25.(10分)(操作发现)
    (1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
    ①求∠EAF的度数;
    ②DE与EF相等吗?请说明理由;
    (类比探究)
    (2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
    ①∠EAF的度数;
    ②线段AE,ED,DB之间的数量关系.

    26.(12分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).

    请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是   人,并将以上两幅统计图补充完整;
    (2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有   人达标;
    (3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
    27.(12分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.
    (1)如图1,当C,B两点均在直线MN的上方时,
    ①直接写出线段AE,BF与CE的数量关系.
    ②猜测线段AF,BF与CE的数量关系,不必写出证明过程.
    (2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.
    (3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
    NE的长,EF的长,则可求sin∠AFG的值.
    【详解】
    解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.

    ∵四边形ABCD是菱形,AB=4,∠DAB=60°,
    ∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
    ∴∠HDE=∠DAB=60°,
    ∵点E是CD中点
    ∴DE=CD=1
    在Rt△DEH中,DE=1,∠HDE=60°
    ∴DH=1,HE=
    ∴AH=AD+DH=5
    在Rt△AHE中,AE==1
    ∴AN=NE=,AE⊥GF,AF=EF
    ∵CD=BC,∠DCB=60°
    ∴△BCD是等边三角形,且E是CD中点
    ∴BE⊥CD,
    ∵BC=4,EC=1
    ∴BE=1
    ∵CD∥AB
    ∴∠ABE=∠BEC=90°
    在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
    ∴EF=
    由折叠性质可得∠AFG=∠EFG,
    ∴sin∠EFG= sin∠AFG = ,故选B.
    【点睛】
    本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.
    2、C
    【解析】
    分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
    详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
    ∴∠B=∠ADC=35°,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠CAB=90°-∠B=55°,
    故选C.
    点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
    3、C
    【解析】
    依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.
    【详解】
    解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,
    ∵三根木条要组成三角形,
    ∴x-x∠MDB>∠DMP=∠ACP,则这种情况不存在,舍去;

    第三种情况,P为线段BA延长线上的“好点”,则∠ACP=∠MBA,
    ∴△PAC∽△PMB;

    ∴BM垂直平分PC则BC=BP= ;

    ∴综上所述,或或;
    【点睛】
    本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.
    21、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);当t=时,S△MDN的最大值为.
    【解析】
    (1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;
    (2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于AD∥BC,设直线AD的解析式为y=-x+b,即可得到结论;
    (3)①由BC∥AD,得到∠DAB=∠CBA,全等只要当或时,△PBC∽△ABD,解方程组得D(4,−5),求得
    设P的坐标为(x,0),代入比例式解得或x=−4.5,即可得到或P(−4.5,0);
    ②过点B作BF⊥AD于F,过点N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF 求得求得 由于于是得到即可得到结果.
    【详解】
    (1)由题意知:
    解得
    ∴二次函数的表达式为
    (2)在 中,令y=0,则
    解得:
    ∴B(3,0),
    由已知条件得直线BC的解析式为y=−x+3,
    ∵AD∥BC,
    ∴设直线AD的解析式为y=−x+b,
    ∴0=1+b,
    ∴b=−1,
    ∴直线AD的解析式为y=−x−1;
    (3)①∵BC∥AD,
    ∴∠DAB=∠CBA,
    ∴只要当:或时,△PBC∽△ABD,
    解得D(4,−5),

    设P的坐标为(x,0),
    即或
    解得或x=−4.5,
    ∴或P(−4.5,0),
    ②过点B作BF⊥AD于F,过点N作NE⊥AD于E,

    在Rt△AFB中,
    ∴sin∠BAF



    又∵





    ∴当时,的最大值为
    【点睛】
    属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.
    22、 ;.
    【解析】
    (1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;
    (2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=S△ABC+S△BCD可求得四边形ABDC的面积.
    【详解】
    由已知得:,,
    把与坐标代入得:

    解得:,,
    则解析式为;
    ∵,
    ∴抛物线顶点坐标为,
    则.
    【点睛】
    二次函数的综合应用.解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形.
    23、见解析
    【解析】
    试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.             
    证明:∵AB∥EF,
    ∴∠B=∠F.
    又∵BD=CF,
    ∴BC=FD.
    在△ABC与△EFD中,
    ∴△ABC≌△EFD(AAS),
    ∴AB=EF.
    24、 (1)当,时有最大值1;(2)当时,面积有最大值32.
    【解析】
    (1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
    (2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
    【详解】
    (1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
    最大面积为×6×(16-6)=1.
    故当,时有最大值1;
    (2)当,时有最大值,
    设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,








    ∴抛物线开口向下
    ∴当 时,面积有最大值32.
    【点睛】
    本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
    25、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1
    【解析】
    试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;
    ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
    (1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
    ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.
    试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
    在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;
    ②DE=EF.理由如下:
    ∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
    (1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
    ②AE1+DB1=DE1,理由如下:
    ∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.
    26、(1)120,补图见解析;(2)96;(3)960人.
    【解析】
    (1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;
    (2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;
    (3)求出达标占的百分比,乘以1200即可得到结果.
    【详解】
    (1)根据题意得:24÷20%=120(人),
    则“优秀”人数为120﹣(24+36)=60(人),“一般”占的百分比为×100%=30%,
    补全统计图,如图所示:

    (2)根据题意得:36+60=96(人),
    则达标的人数为96人;
    (3)根据题意得:×1200=960(人),
    则全校达标的学生有960人.
    故答案为(1)120;(2)96人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    27、(1)①AE+BF =EC;②AF+BF=2CE;(2)AF﹣BF=2CE,证明见解析;(3)FG=.
    【解析】
    (1)①只要证明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;
    ②利用①中结论即可解决问题;
    (2)首先证明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解决问题;
    【详解】
    解:(1)证明:①如图1,过点C做CD⊥BF,交FB的延长线于点D,

    ∵CE⊥MN,CD⊥BF,
    ∴∠CEA=∠D=90°,
    ∵CE⊥MN,CD⊥BF,BF⊥MN,
    ∴四边形CEFD为矩形,
    ∴∠ECD=90°,
    又∵∠ACB=90°,
    ∴∠ACB-∠ECB=∠ECD-∠ECB,
    即∠ACE=∠BCD,
    又∵△ABC为等腰直角三角形,
    ∴AC=BC,
    在△ACE和△BCD中,

    ∴△ACE≌△BCD(AAS),
    ∴AE=BD,CE=CD,
    又∵四边形CEFD为矩形,
    ∴四边形CEFD为正方形,
    ∴CE=EF=DF=CD,
    ∴AE+BF=DB+BF=DF=EC.
    ②由①可知:AF+BF=AE+EF+BF
    =BD+EF+BF
    =DF+EF
    =2CE,
    (2)AF-BF=2CE
    图2中,过点C作CG⊥BF,交BF延长线于点G,

    ∵AC=BC
    可得∠AEC=∠CGB,
    ∠ACE=∠BCG,
    在△CBG和△CAE中,

    ∴△CBG≌△CAE(AAS),
    ∴AE=BG,
    ∵AF=AE+EF,
    ∴AF=BG+CE=BF+FG+CE=2CE+BF,
    ∴AF-BF=2CE;
    (3)如图3,过点C做CD⊥BF,交FB的于点D,

    ∵AC=BC
    可得∠AEC=∠CDB,
    ∠ACE=∠BCD,
    在△CBD和△CAE中,

    ∴△CBD≌△CAE(AAS),
    ∴AE=BD,
    ∵AF=AE-EF,
    ∴AF=BD-CE=BF-FD-CE=BF-2CE,
    ∴BF-AF=2CE.
    ∵AF=3,BF=7,
    ∴CE=EF=2,AE=AF+EF=5,
    ∵FG∥EC,
    ∴,
    ∴,
    ∴FG=.
    【点睛】
    本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.

    相关试卷

    2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(3月4月)含解析:

    这是一份2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(3月4月)含解析

    2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(4月5月)含解析:

    这是一份2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(4月5月)含解析

    2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(一模二模)含解析:

    这是一份2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(一模二模)含解析

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map