|试卷下载
搜索
    上传资料 赚现金
    第7章锐角三角形-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
    立即下载
    加入资料篮
    第7章锐角三角形-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)01
    第7章锐角三角形-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)02
    第7章锐角三角形-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)03
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第7章锐角三角形-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)

    展开
    这是一份第7章锐角三角形-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共40页。

    第7章锐角三角形-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
    一.锐角三角函数的定义(共1小题)
    1.(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sinA的值为    .
    二.特殊角的三角函数值(共1小题)
    2.(2020•无锡)tan30°的值为(  )
    A. B. C. D.
    三.解直角三角形(共3小题)
    3.(2022•常州)如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=   .

    4.(2022•连云港)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sinA=   .

    5.(2020•盐城)如图,在△ABC中,∠C=90°,tanA=,∠ABC的平分线BD交AC于点D,CD=,求AB的长?

    四.解直角三角形的应用(共9小题)
    6.(2020•南通)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为   m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

    7.(2022•镇江)如图1是一张圆凳的造型,已知这张圆凳的上、下底面圆的直径都是30cm,高为42.9cm.它被平行于上、下底面的平面所截得的横截面都是圆.小明画出了它的主视图,是由上、下底面圆的直径AB、CD以及、组成的轴对称图形,直线l为对称轴,点M、N分别是、的中点,如图2,他又画出了所在的扇形并度量出扇形的圆心角∠AEC=66°,发现并证明了点E在MN上.请你继续完成MN长的计算.
    参考数据:sin66°≈,cos66°≈,tan66°≈,sin33°≈,cos33°≈,tan33°≈.

    8.(2022•盐城)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.
    (1)求A、C两点之间的距离;
    (2)求OD长.
    (结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)

    9.(2022•泰州)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)

    10.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.
    (参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)

    11.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.
    (1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;
    (2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

    12.(2021•连云港)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.
    (1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;
    (2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.
    (参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)

    13.(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).

    14.(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.
    (1)经过多长时间,盛水筒P首次到达最高点?
    (2)浮出水面3.4秒后,盛水筒P距离水面多高?
    (3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.
    (参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)

    五.解直角三角形的应用-坡度坡角问题(共2小题)
    15.(2021•无锡)一条上山直道的坡度为1:7,沿这条直道上山,每前进100米所上升的高度为    米.
    16.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.
    (1)求AE的长(结果取整数);
    (2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?
    参考数据:≈1.41,≈1.73,≈2.45.
    锐角A
    三角函数
    13°
    28°
    32°
    sinA
    0.22
    0.47
    0.53
    cosA
    0.97
    0.88
    0.85
    tanA
    0.23
    0.53
    0.62

    六.解直角三角形的应用-仰角俯角问题(共9小题)
    17.(2020•苏州)如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操作:
    (1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;
    (2)量得测角仪的高度CD=a;
    (3)量得测角仪到旗杆的水平距离DB=b.
    利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为(  )

    A.a+btanα B.a+bsinα C.a+ D.a+
    18.(2022•南通)如图,B为地面上一点,测得B到树底部C的距离为10m,在B处放置1m高的测角仪BD,测得树顶A的仰角为60°,则树高AC为    m(结果保留根号).

    19.(2022•宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保留根号).

    20.(2022•连云港)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10m;小亮在点G处竖立标杆FG,小亮的所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5m,GD=2m.
    (1)求阿育王塔的高度CE;
    (2)求小亮与阿育王塔之间的距离ED.
    (注:结果精确到0.01m,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327)

    21.(2021•淮安)如图,平地上一幢建筑物AB与铁塔CD相距50m,在建筑物的顶部A处测得铁塔顶部C的仰角为28°、铁塔底部D的俯角为40°,求铁塔CD的高度.
    (参考数据:sin28°≈0.47,cos28°≈0.8,tan28°≈0.53,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

    22.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)

    23.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).

    24.(2020•镇江)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)

    25.(2020•泰州)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)

    七.解直角三角形的应用-方向角问题(共4小题)
    26.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为    海里(结果保留根号).

    27.(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.

    28.(2020•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD边AB的中点M处有一座雕塑.在某一时刻,小红到达点P处,爸爸到达点Q处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM=30m,求小红与爸爸的距离PQ.(结果精确到1m,参考数据:≈1.41,≈1.73,≈2.45)

    29.(2020•南京)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)


    第7章锐角三角形-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
    参考答案与试题解析
    一.锐角三角函数的定义(共1小题)
    1.(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sinA的值为  . .
    【解答】解:在△ABC中,∠C=90°,
    ∴c2=a2+b2,
    ∵b2=ac,
    ∴c2=a2+ac,
    等式两边同时除以ac得:
    =+1,
    令=x,则有=x+1,
    ∴x2+x﹣1=0,
    解得:x1=,x2=(舍去),
    当x=时,x≠0,
    ∴x=是原分式方程的解,
    ∴sinA==.
    故答案为:.
    二.特殊角的三角函数值(共1小题)
    2.(2020•无锡)tan30°的值为(  )
    A. B. C. D.
    【解答】解:tan30°=,
    故选:C.
    三.解直角三角形(共3小题)
    3.(2022•常州)如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=  .

    【解答】解:过点D作DE⊥BC,垂足为E,如图,
    ∵∠A=∠ABC=90°,
    ∴AD∥BC,
    ∴∠ADB=∠CBD,
    ∵DB平分∠ADC,
    ∴∠ADB=∠CDB,
    ∴CD=CB=3,
    ∵AD=BE=1,
    ∴CE=BC﹣BE=3﹣1=2,
    在Rt△CDE中,
    DE===,
    ∵DE=AB,
    在Rt△ADB中,
    ==,
    ∴sin∠ABD==.
    故答案为:.

    4.(2022•连云港)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sinA=  .

    【解答】解:设每个小正方形的边长为a,
    作CD⊥AB于点D,
    由图可得:CD=4a,AD=3a,
    ∴AC===5a,
    ∴sin∠CAB===,
    故答案为:.

    5.(2020•盐城)如图,在△ABC中,∠C=90°,tanA=,∠ABC的平分线BD交AC于点D,CD=,求AB的长?

    【解答】解:在Rt△ABC中,∠C=90°,tanA=,
    ∴∠A=30°,
    ∴∠ABC=60°,
    ∵BD是∠ABC的平分线,
    ∴∠CBD=∠ABD=30°,
    又∵CD=,
    ∴BC==3,
    在Rt△ABC中,∠C=90°,∠A=30°,
    ∴AB==6.
    答:AB的长为6.
    四.解直角三角形的应用(共9小题)
    6.(2020•南通)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为 7.5 m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

    【解答】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5m,DC=BE=1.5m,
    在Rt△ADE中,
    ∵tan∠ADE=,
    ∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(m),
    ∴AB=AE+BE=5.95+1.5≈7.5(m),
    故答案为:7.5m.

    7.(2022•镇江)如图1是一张圆凳的造型,已知这张圆凳的上、下底面圆的直径都是30cm,高为42.9cm.它被平行于上、下底面的平面所截得的横截面都是圆.小明画出了它的主视图,是由上、下底面圆的直径AB、CD以及、组成的轴对称图形,直线l为对称轴,点M、N分别是、的中点,如图2,他又画出了所在的扇形并度量出扇形的圆心角∠AEC=66°,发现并证明了点E在MN上.请你继续完成MN长的计算.
    参考数据:sin66°≈,cos66°≈,tan66°≈,sin33°≈,cos33°≈,tan33°≈.

    【解答】解:连接AC,交MN于点H,设直线l交MN于点Q,

    ∵M是的中点,点E在MN上,
    ∴∠AEM=∠CEM=∠AEC=33°,
    在△AEC中,EA=EC,∠AEH=∠CEH,
    ∴EH⊥AC,AH=CH,
    ∵直线l是对称轴,
    ∴AB⊥l,CD⊥l,MN⊥l,
    ∴AB∥CD∥MN,
    ∴AC⊥AB,
    ∴AC=42.9cm,AH=CH=cm,
    在Rt△AEH中,sin∠AEH=,
    即=,
    则AE=39,
    tan∠AEH=,
    即=,
    则EH=33,
    ∴MH=6cm,
    ∵该图形为轴对称图形,
    ∴MQ=MH+HQ=6+15=21(cm),
    ∴MN=42(cm),
    即MN的长为42cm.
    8.(2022•盐城)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.
    (1)求A、C两点之间的距离;
    (2)求OD长.
    (结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)

    【解答】
    解:(1)如图,过点A作AE⊥CB,垂足为E,
    在Rt△ABE中,AB=5m,∠ABE=37°,
    ∵sin∠ABE=,cos∠ABE=,
    ∴=0.60,=0.80,
    ∴AE=3m,BE=4m,
    ∴CE=6m,
    在Rt△ACE中,由勾股定理AC==3≈6.7m.
    (2)过点A作AF⊥CD,垂足为F,
    ∴FD=AO=1m,
    ∴CF=5m,
    在Rt△ACF中,由勾股定理AF==2m.
    ∴OD=2≈4.5m.
    9.(2022•泰州)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)

    【解答】解:连接MC,过点M作HM⊥NM,

    由题意得:
    ∠DMC=2∠CMH,∠MCD=∠HMN=90°,AB=MC=8m,AB∥MC,
    ∴∠CMN=180°﹣∠MNB=180°﹣118°=62°,
    ∴∠CMH=∠HMN﹣∠CMN=28°,
    ∴∠DMC=2∠CMH=56°,
    在Rt△CMD中,CD=CM•tan56°≈8×1.48≈11.8(米),
    ∴能看到的水平地面上最远处D到他的距离CD约为11.8米.

    10.(2021•南京)如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.
    (参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)

    【解答】解:过B作BE⊥CD于E,过A作AF⊥BE于F,如图:

    ∵∠BCD=45°,
    ∴△BCE是等腰直角三角形,
    设CE=x,则BE=x,
    ∵CD=80m,
    ∴DE=(80﹣x)m,
    Rt△BDE中,∠BDC=56°19',
    ∴tan56°19'=,即=1.5,
    解得x=48(m),
    ∴BE=CE=48m,
    Rt△ACD中,∠ADC=19°17′,CD=80m,
    ∴tan19°17'=,即=0.35,
    解得AC=28m,
    ∵∠ACD=90°,BE⊥CD于E,AF⊥BE,
    ∴四边形ACEF是矩形,
    ∴AF=CE=48m,EF=AC=28m,
    ∴BF=BE﹣EF=20m,
    Rt△ABF中,AB===52(m),
    答:A,B两点之间的距离是52m.
    11.(2021•盐城)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.
    (1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;
    (2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

    【解答】解:(1)过点D作DF⊥BC于F,

    ∵∠FCD=60°,∠CFD=90°,
    ∴FC=CD×cos60°=50×=25(cm),
    ∴FA=AB+BC﹣CF=84+54﹣25=113(cm),
    答:灯泡悬挂点D距离地面的高度为113cm;
    (2)如图3,过点C作CG垂直于地面于点G,过点B作BN⊥CG于N,过点D作DM⊥CG于M,

    ∵BC=54cm,
    ∴CN=BC×cos20°=54×0.94=50.76(cm),
    ∴MN=CN+MG﹣CG=50.76+90﹣50.76﹣84=6(cm),
    ∴CM=CN﹣MN=44.76(cm),
    ∴CD==≈58(cm),
    答:CD的长为58cm.
    12.(2021•连云港)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.
    (1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;
    (2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.
    (参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)

    【解答】解:(1)过点B作BF⊥CH,垂足为F,延长AD交BF于E,垂足为E,则AE⊥BF,
    由cos∠BAE=,
    ∴cos22°=,
    ∴,即AE=4.5m,
    ∴DE=AE﹣AD=4.5﹣0.4=4.1(m),
    由sin∠BAE=,
    ∴,
    ∴,即BE=1.8m,
    ∴BF=BE+EF=1.8+1.2=3(m),
    又,
    ∴,即CF=4m,
    ∴CH=CF+HF=CF+DE=4+4.1=8.1(m),即点O到岸边DH的距离为8.1m;

    (2)过点B作BN⊥OH,垂足为N,延长AD交BN于点M,垂足为M,
    由cos∠BAM=,
    ∴,
    ∴,
    即AM=2.88m,
    ∴DM=AM﹣AD=2.88﹣0.4=2.48(m),
    由sin∠BAM=,
    ∴,
    ∴,即BM=3.84m,
    ∴BN=BM+MN=3.84+1.2=5.04(m),
    ∴=(m),
    ∴OH=ON+HN=ON+DM=4.58(m),
    即点O到岸边的距离为4.58m.
    13.(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).

    【解答】解:过点C作CD⊥AB于点D,如图所示.
    在Rt△ACD中,AC=8(千米),∠CAD=30°,∠CDA=90°,
    ∴CD=AC•sin∠CAD=4(千米),AD=AC•cos∠CAD=4(千米)≈6.8(千米).
    在Rt△BCD中,CD=4(千米),∠BDC=90°,∠CBD=45°,
    ∴∠BCD=45°,
    ∴BD=CD=4(千米),
    ∴AB=AD+BD=6.8+4≈11(千米).
    答:A、B两点间的距离约为11千米.

    14.(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.
    (1)经过多长时间,盛水筒P首次到达最高点?
    (2)浮出水面3.4秒后,盛水筒P距离水面多高?
    (3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.
    (参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)

    【解答】解:(1)如图1中,连接OA.

    由题意,筒车每秒旋转360°×÷60=5°,
    在Rt△ACO中,cos∠AOC===.
    ∴∠AOC=43°,
    ∴=27.4(秒).
    答:经过27.4秒时间,盛水筒P首次到达最高点.
    (2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,

    ∴∠POC=∠AOC+∠AOP=43°+17°=60°,
    过点P作PD⊥OC于D,
    在Rt△POD中,OD=OP•cos60°=3×=1.5(m),
    2.2﹣1.5=0.7(m),
    答:浮出水面3.4秒后,盛水筒P距离水面0.7m.
    (3)如图3中,

    ∵点P在⊙O上,且MN与⊙O相切,
    ∴当点P在MN上时,此时点P是切点,连接OP,则OP⊥MN,
    在Rt△OPM中,cos∠POM==,
    ∴∠POM≈68°,
    在Rt△COM中,cos∠COM===,
    ∴∠COM=74°,
    ∴∠POH=180°﹣∠POM﹣∠COM=180°﹣68°﹣74°=38°,
    ∴需要的时间为=7.6(秒),
    答:盛水筒P从最高点开始,至少经过7.6秒恰好在直线MN上.
    五.解直角三角形的应用-坡度坡角问题(共2小题)
    15.(2021•无锡)一条上山直道的坡度为1:7,沿这条直道上山,每前进100米所上升的高度为  10 米.
    【解答】解:设上升的高度为x米,
    ∵上山直道的坡度为1:7,
    ∴水平距离为7x米,
    由勾股定理得:x2+(7x)2=1002,
    解得:x1=10,x2=﹣10(舍去),
    故答案为:10.
    16.(2021•徐州)如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.
    (1)求AE的长(结果取整数);
    (2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?
    参考数据:≈1.41,≈1.73,≈2.45.
    锐角A
    三角函数
    13°
    28°
    32°
    sinA
    0.22
    0.47
    0.53
    cosA
    0.97
    0.88
    0.85
    tanA
    0.23
    0.53
    0.62

    【解答】解:(1)在Rt△ADF中,cos∠DAF=,
    ∴AF=AD•cos∠DAF=100×cos28°=100×0.88=88(cm),
    在Rt△AEF中,cos∠EAF=,
    ∴AE===≈91(cm);
    (2)设DG交AB于M,过点A作AN⊥DG于N,如图所示:
    ∴∠AMN=∠MAG+∠DGA=13°+32°=45°,
    在Rt△ADF中,DF=AD•sin∠DAC=100×sin28°=100×0.47=47(cm),
    在Rt△DFG中,tan∠DGA=,
    ∴tan32°=,
    ∴FG==≈75.8(cm),
    ∴AG=AF+FG=88+75.8=163.8(cm),
    在Rt△AGN中,AN=AG•sin∠DGA=163.8×sin32°=163.8×0.53≈86.8(cm),
    ∵∠AMN=45°,
    ∴△AMN为等腰直角三角形,
    ∴AM=AN≈1.41×86.8≈122.4(cm),
    ∴EM=AM﹣AE≈122.4﹣91≈31.4(cm),
    当M、H重合时,EH的值最小,
    ∴EH的最小值约为32cm.

    六.解直角三角形的应用-仰角俯角问题(共9小题)
    17.(2020•苏州)如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操作:
    (1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;
    (2)量得测角仪的高度CD=a;
    (3)量得测角仪到旗杆的水平距离DB=b.
    利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为(  )

    A.a+btanα B.a+bsinα C.a+ D.a+
    【解答】解:过C作CF⊥AB于F,则四边形BFCD是矩形,
    ∴BF=CD=a,CF=BD=b,
    ∵∠ACF=α,
    ∴tanα==,
    ∴AF=b•tanα,
    ∴AB=AF+BF=a+btanα,
    故选:A.

    18.(2022•南通)如图,B为地面上一点,测得B到树底部C的距离为10m,在B处放置1m高的测角仪BD,测得树顶A的仰角为60°,则树高AC为  (1+10) m(结果保留根号).

    【解答】解:如图,设DE⊥AC于点E,

    在Rt△AED中,AE=DE•tan60°=10×=10,
    ∴AC=1+10(m).
    故答案为:1+10.
    19.(2022•宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保留根号).

    【解答】解:过点A作AE⊥CD,垂足为E,

    由题意得:
    AB=DE=20m,
    在Rt△ADE中,∠EAD=30°,
    ∴AE===20(m),
    在Rt△AEC中,∠CAE=45°,
    ∴CE=AE•tan45°=20×1=20(m),
    ∴CD=CE+DE=(20+20)m,
    ∴信号塔的高度为(20+20)m.

    20.(2022•连云港)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10m;小亮在点G处竖立标杆FG,小亮的所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5m,GD=2m.
    (1)求阿育王塔的高度CE;
    (2)求小亮与阿育王塔之间的距离ED.
    (注:结果精确到0.01m,参考数据:sin53°≈0.799,cos53°≈0.602,tan53°≈1.327)

    【解答】解:(1)在Rt△CAE中,
    ∵∠CAE=45°,
    ∴CE=AE,
    ∵AB=10m,
    ∴BE=AE﹣10=CE﹣10,
    在Rt△CEB中,
    tan∠CBE=tan53°==,
    ∴1.327≈,
    解得CE≈40.58(m);
    答:阿育王塔的高度CE约为40.58m;
    (2)由题意知:∠CED=90°=∠FGD,∠FDG=∠CDE,
    ∴△FGD∽△CED,
    ∴=,即=,
    解得ED≈54.11(m),
    答:小亮与阿育王塔之间的距离ED约是54.11m.
    21.(2021•淮安)如图,平地上一幢建筑物AB与铁塔CD相距50m,在建筑物的顶部A处测得铁塔顶部C的仰角为28°、铁塔底部D的俯角为40°,求铁塔CD的高度.
    (参考数据:sin28°≈0.47,cos28°≈0.8,tan28°≈0.53,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

    【解答】解:如图,过A作AE⊥CD,垂足为E.

    则AE=50m,
    在Rt△AEC中,CE=AE•tan28°≈50×0.53=26.5(m),
    在Rt△AED中,DE=AE•tan40°≈50×0.84=42(m),
    ∴CD=CE+DE≈26.5+42=68.5(m).
    答:铁塔CD的高度约为68.5m.
    22.(2021•泰州)如图,游客从旅游景区山脚下的地面A处出发,沿坡角α=30°的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.求山顶D的高度.(精确到1m,sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)

    【解答】解:如图,过点C、B分别作CE⊥DG,BF⊥DG垂足为E、F,延长CB交AG于点H,
    由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,
    在Rt△ABH中,∠α=30°,AB=50m,
    ∴BH=AB=25(m)=FG,
    在Rt△DCE中,∠DCE=19°30′,CD=180m,
    ∴DE=sin∠DCE•CD≈0.33×180=59.4(m),
    ∴DG=DE+EF+FG=59.4+30+25=114.4≈114(m),
    答:山顶D的高度约为114m.

    23.(2021•宿迁)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).

    【解答】解:过A作AC⊥PQ,交PQ的延长线于C,如图所示:
    设AC=x米,
    由题意得:PQ=5米,∠APC=30°,∠BQC=45°,
    在Rt△APC中,tan∠APC==tan30°=,
    ∴PC=AC=x(米),
    在Rt△BCQ中,tan∠BQC==tan45°=1,
    ∴QC=BC=AC+AB=(x+3)米,
    ∵PC﹣QC=PQ=5米,
    ∴x﹣(x+3)=5,
    解得:x=4(+1),
    ∴BC=4(+1)+3=4+7≈14(米),
    答:无人机飞行的高度约为14米.

    24.(2020•镇江)如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30°,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45°,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)

    【解答】解:如图,延长FH,交CD于点M,交AB于点N,

    ∵∠BHN=45°,BA⊥MH,
    则BN=NH,
    设BN=NH=x,
    ∵HF=6 m,∠BFN=30°,
    ∴tan∠BFN==,
    即tan30°=,
    解得x≈8.2,
    根据题意可知:
    DM=MH=MN+NH,
    ∵MN=AC=10(m),
    则DM≈10+8.2=18.2(m),
    ∴CD=DM+MC=DM+EF≈18.2+1.6=19.8(m).
    答:建筑物CD的高度约为19.8m.
    25.(2020•泰州)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)

    【解答】解:如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,
    在Rt△ACE中,tanC=tan23°==≈0.42,
    解得:CE≈35.7(m),
    在Rt△BDE中,tan∠BDE=tan50°==≈1.19,
    解得:DE≈17.6(m),
    ∴CD=CE﹣DE=35.7﹣17.6=18.1≈18m,
    答:两次观测期间龙舟前进了18m.

    七.解直角三角形的应用-方向角问题(共4小题)
    26.(2021•南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为  25 海里(结果保留根号).

    【解答】解:过P作PC⊥AB于C,如图所示:
    由题意得:∠APC=30°,∠BPC=45°,PA=50海里,
    在Rt△APC中,cos∠APC=,
    ∴PC=PA•cos∠APC=50×=25(海里),
    在Rt△PCB中,cos∠BPC=,
    ∴PB===25(海里),
    故答案为:25.

    27.(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.

    【解答】解:如图,过点C作CD⊥AB于点D,

    则∠CAD=∠ACD=45°,
    ∴AD=CD,
    设AD=x,则AC=x,
    ∴BD=AB﹣AD=2﹣x,
    ∵∠CBD=60°,
    在Rt△BCD中,∵tan∠CBD=,
    ∴=,
    解得x=3﹣.
    经检验,x=3﹣是原方程的根.
    ∴AC=x=(3﹣)=(3﹣)km.
    答:船C离观测站A的距离为(3﹣)km.
    28.(2020•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD边AB的中点M处有一座雕塑.在某一时刻,小红到达点P处,爸爸到达点Q处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM=30m,求小红与爸爸的距离PQ.(结果精确到1m,参考数据:≈1.41,≈1.73,≈2.45)

    【解答】解:过点P作PN⊥BC于N,如图,
    则四边形ABNP是矩形,
    ∴PN=AB,
    ∵四边形ABCD是矩形,
    ∴∠A=90°,
    ∵∠APM=45°,
    ∴△APM是等腰直角三角形,
    ∴AM=PM=×30=15(m),
    ∵M是AB的中点,
    ∴PN=AB=2AM=30m,
    在Rt△PNQ中,∠NPQ=90°﹣∠DPQ=90°﹣60°=30°,
    ∴NQ=PN=10m,PQ=2NQ=20≈49(m);
    答:小红与爸爸的距离PQ约为49m.

    29.(2020•南京)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)

    【解答】解:如图,过点D作DH⊥AC于点H,

    在Rt△DCH中,∠C=37°,
    ∴CH=,
    在Rt△DBH中,∠DBH=45°,
    ∴BH=,
    ∵BC=CH﹣BH,
    ∴﹣=6km,
    解得DH≈18km,
    在Rt△DAH中,∠ADH=26°,
    ∴AD=≈20km.
    答:轮船航行的距离AD约为20km.
    相关试卷

    2022-2023学年苏科版九年级数学上学期期末复习培优练习(江苏扬州中考真题): 这是一份2022-2023学年苏科版九年级数学上学期期末复习培优练习(江苏扬州中考真题),共27页。试卷主要包含了,与y轴交于点C等内容,欢迎下载使用。

    第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州): 这是一份第28章+锐角三角形-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共28页。

    第28章锐角三角形(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第28章锐角三角形(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共22页。试卷主要包含了0=   等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map