福建省厦门市六中学2022年中考试题猜想数学试卷含解析
展开
这是一份福建省厦门市六中学2022年中考试题猜想数学试卷含解析,共17页。试卷主要包含了下列命题是真命题的是,下面四个几何体等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为( )A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×10112.数据”1,2,1,3,1”的众数是( )A.1 B.1.5 C.1.6 D.33.如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是 A. B. C. D.4.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( )A.13 B.15 C.17 D.195.如图⊙O的直径垂直于弦,垂足是,,,的长为( )A. B.4 C. D.86.下列命题是真命题的是( )A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形7.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是( )A.4 B.3+ C.3 D.8.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)29.下面四个几何体: 其中,俯视图是四边形的几何体个数是( )A.1 B.2 C.3 D.410.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是( )A. B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.一个多项式与的积为,那么这个多项式为 .12.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.13.方程的解是__________.14.分式有意义时,x的取值范围是_____.15.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 .16.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)17.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.三、解答题(共7小题,满分69分)18.(10分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想. 图① 图② 图③19.(5分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?20.(8分)解不等式组,并把解集在数轴上表示出来.21.(10分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40120364频率0.2m0.180.02 (1)本次问卷调查取样的样本容量为 ,表中的m值为 ;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?22.(10分)解不等式组: ,并写出它的所有整数解.23.(12分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.24.(14分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.【详解】解:929亿=92900000000=9.29×11.故选B.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2、A【解析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【详解】在这一组数据中1是出现次数最多的,故众数是1.故选:A.【点睛】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.3、C【解析】
根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本选项错误;B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误;C、∵EF∥CD,DE∥BC,∴,,∴,故本选项正确;D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.4、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.5、C【解析】
∵直径AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故选C.6、D【解析】
根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.7、B【解析】试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.8、C【解析】
按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.9、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B.考点:简单几何体的三视图10、A【解析】
根据平行线分线段成比例定理逐项分析即可.【详解】A.∵,∴,,∴,故A正确;B. ∵,∴,故B不正确;C. ∵,∴ ,故C不正确;D. ∵,∴,故D不正确;故选A.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例. 二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题分析:依题意知=考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。12、y1<y1【解析】
直接利用一次函数的性质分析得出答案.【详解】解:∵直线经过第一、三、四象限,∴y随x的增大而增大,∵x1<x1,∴y1与y1的大小关系为:y1<y1.故答案为:y1<y1.【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.13、.【解析】
根据解分式方程的步骤依次计算可得.【详解】解:去分母,得:,解得:,当时,,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14、x<1【解析】
要使代数式有意义时,必有1﹣x>2,可解得x的范围.【详解】根据题意得:1﹣x>2,解得:x<1.故答案为x<1.【点睛】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.15、7【解析】试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.16、100(1+)【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.详解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.故答案为100(1+).点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.17、【解析】
试题解析:根据题意,得:解得:故答案为【点睛】:一个正数有2个平方根,它们互为相反数. 三、解答题(共7小题,满分69分)18、(1)图②结论:AF=CD+CF. (2)图③结论:AF=CD+CF.【解析】试题分析:(1)作,的延长线交于点.证三角形全等,进而通过全等三角形的对应边相等验证之间的关系;(2)延长交的延长线于点由全等三角形的对应边相等验证关系.试题解析:(1)图②结论: 证明:作,的延长线交于点.∵四边形是矩形, 由是中点,可证≌ (2)图③结论:延长交的延长线于点如图所示因为四边形是平行四边形所以//且,因为为的中点,所以也是的中点,所以 又因为 所以 又因为 所以≌ 所以 因为 19、;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】
(1)根据函数图象中的数据可以求得关于的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设关于的函数解析式是,,得,即关于的函数解析式是;(2)由图象可知,步行的学生的速度为:千米/分钟,步行同学到达百花公园的时间为:(分钟),当时, ,得,,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.20、﹣1≤x<1.【解析】
求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<1.不等式组的解集在数轴上表示如下:21、 (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人【解析】
(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.22、﹣2,﹣1,0,1,2;【解析】
首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得解不等式(2),得x≤2 所以不等式组的解集:-3<x≤2 它的整数解为:-2,-1,0,1,223、(1);(2)【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24、(1);(2).【解析】
(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率= .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
相关试卷
这是一份重庆市中学2021-2022学年中考试题猜想数学试卷含解析,共20页。
这是一份福建省泉州市成功中学2022年中考试题猜想数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,函数y=中自变量x的取值范围是,6的相反数为等内容,欢迎下载使用。
这是一份福建省莆田涵江区四校联考2021-2022学年中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,按一定规律排列的一列数依次为,在平面直角坐标系中,点P,一元二次方程的根是等内容,欢迎下载使用。