![福建省厦门市五缘第二实验校2022年中考数学最后冲刺浓缩精华卷含解析01](http://img-preview.51jiaoxi.com/2/3/13517105/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省厦门市五缘第二实验校2022年中考数学最后冲刺浓缩精华卷含解析02](http://img-preview.51jiaoxi.com/2/3/13517105/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省厦门市五缘第二实验校2022年中考数学最后冲刺浓缩精华卷含解析03](http://img-preview.51jiaoxi.com/2/3/13517105/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
福建省厦门市五缘第二实验校2022年中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列几何体中,三视图有两个相同而另一个不同的是( )
A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)
2.4的平方根是( )
A.2 B.±2 C.8 D.±8
3.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
4.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )
班级
平均数
中位数
众数
方差
八(1)班
94
93
94
12
八(2)班
95
95.5
93
8.4
A.八(2)班的总分高于八(1)班
B.八(2)班的成绩比八(1)班稳定
C.两个班的最高分在八(2)班
D.八(2)班的成绩集中在中上游
5.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积等于( )
A.2 B.3 C. 4 D.6
6.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为( )
A. B. C.π D.
7.下列各数中是有理数的是( )
A.π B.0 C. D.
8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )
A.10,15 B.13,15 C.13,20 D.15,15
9.下列计算,正确的是( )
A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
10.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
A.68° B.20° C.28° D.22°
二、填空题(共7小题,每小题3分,满分21分)
11.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.
12.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程____.
13.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.
14.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_____.
15.计算:________.
16.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.
17.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.
三、解答题(共7小题,满分69分)
18.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组
频数
频率
第一组(0≤x<15)
3
0.15
第二组(15≤x<30)
6
a
第三组(30≤x<45)
7
0.35
第四组(45≤x<60)
b
0.20
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
19.(5分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
(1)求出的值;
(2)求直线AB对应的一次函数的表达式;
(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).
20.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.
21.(10分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:
根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
22.(10分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.
(1)求该抛物线的解析式;
(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;
(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.
23.(12分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
24.(14分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据三视图的定义即可解答.
【详解】
正方体的三视图都是正方形,故(1)不符合题意;
圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;
圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;
三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;
故选B.
【点睛】
本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.
2、B
【解析】
依据平方根的定义求解即可.
【详解】
∵(±1)1=4,
∴4的平方根是±1.
故选B.
【点睛】
本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
3、A
【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
抛物线y=x2的顶点坐标为(0,0),
先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),
所以,平移后的抛物线的解析式为y=(x+2)2﹣1.
故选:A.
【点睛】
本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.
4、C
【解析】
直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.
【详解】
A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;
B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
C选项:两个班的最高分无法判断出现在哪个班,错误;
D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
故选C.
【点睛】
考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.
5、B
【解析】
作BD⊥x轴于D,CE⊥x轴于E,
∴BD∥CE,
∴,
∵OC是△OAB的中线,
∴,
设CE=x,则BD=2x,
∴C的横坐标为,B的横坐标为,
∴OD=,OE=,
∴DE=OE-OD=﹣=,
∴AE=DE=,
∴OA=OE+AE=,
∴S△OAB=OA•BD=×=1.
故选B.
点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.
6、A
【解析】
试题分析:连接OB,OC,
∵AB为圆O的切线,
∴∠ABO=90°,
在Rt△ABO中,OA=,∠A=30°,
∴OB=,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC为等边三角形,
∴∠BOC=60°,
则劣弧长为.
故选A.
考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.
7、B
【解析】
【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
B、0是有理数,故本选项正确;
C、是无理数,故本选项错误;
D、是无理数,故本选项错误,
故选B.
【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
8、D
【解析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.
【详解】
将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.
【点睛】
本题考查中位数和众数的概念,熟记概念即可快速解答.
9、C
【解析】
解:A.故错误;
B. 故错误;
C.正确;
D.
故选C.
【点睛】
本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.
10、D
【解析】
试题解析:∵四边形ABCD为矩形,
∴∠BAD=∠ABC=∠ADC=90°,
∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,
∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
∵∠2=∠1=112°,
而∠ABD=∠D′=90°,
∴∠3=180°-∠2=68°,
∴∠BAB′=90°-68°=22°,
即∠α=22°.
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、3
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r
∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,
∴圆心距O1O2的取值范围为5-2
本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.
12、先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.
【解析】
根据旋转的性质,平移的性质即可得到由△DEF得到△ABC的过程.
【详解】
由题可得,由△DEF得到△ABC的过程为:
先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.(答案不唯一)
故答案为:先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.
【点睛】
本题考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.
13、y=160﹣80x(0≤x≤2)
【解析】
根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.
【详解】
解:∵汽车的速度是平均每小时80千米,
∴它行驶x小时走过的路程是80x,
∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).
【点睛】
本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.
14、
【解析】
【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.
【详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;
Rt△ABC中,∠BAC=90°,AB=3,AC=6,
∴BC==9,
S△ABC=AB•AC=BC•AF,
∴3×6=9AF,
AF=2,
∴AA'=2AF=4,
∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,
∴∠A'=∠C,
∵∠AEA'=∠BAC=90°,
∴△AEA'∽△BAC,
∴,
∴,
∴A'E=,
即AD+DE的最小值是,
故答案为.
【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.
15、
【解析】
根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
【详解】
解:原式=
=
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
16、
【解析】
首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.
【详解】
在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′为等边三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,
∴A′D=CA′=1,CD=A′D=,
∴.
故答案为:
【点睛】
本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.
17、2
【解析】
∵,
∴,
故答案为2.
三、解答题(共7小题,满分69分)
18、0.3 4
【解析】
(1)由统计图易得a与b的值,继而将统计图补充完整;
(2)利用用样本估计总体的知识求解即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
【详解】
(1)a=1﹣0.15﹣0.35﹣0.20=0.3;
∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);
故答案为0.3,4;
补全统计图得:
(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
(3)画树状图得:
∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.
【点睛】
本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
19、(2)2;(2)y=x+2;(3).
【解析】
(2)确定A、B、C的坐标即可解决问题;
(2)理由待定系数法即可解决问题;
(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
【详解】
解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
∴A(2,2),B(-2,-2),C(3,2)
∴k=2.
(2)设直线AB的解析式为y=mx+n,则有,
解得,
∴直线AB的解析式为y=x+2.
(3)∵C、D关于直线AB对称,
∴D(0,4)
作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,
此时PC+PD的值最小,最小值=CD′=.
【点睛】
本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
20、∠CMA =35°.
【解析】
根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.
【详解】
∵AB∥CD,∴∠ACD+∠CAB=180°.
又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.
又∵AB∥CD,∴∠CMA=∠BAM=35°.
【点睛】
本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.
21、 (1)1000;(2)54°;(3)见解析;(4)32万人
【解析】
根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.
【详解】
解:
(1)400÷40%=1000(人)
(2)360°×=54°,
故答案为:1000人; 54° ;
(3)1-10%-9%-26%-40%=15%
15%×1000=150(人)
(4)80×=52.8(万人)
答:总人数为52.8万人.
【点睛】
本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.
22、(1);(2);(3)或.
【解析】
(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.
【详解】
(1)抛物线的图象经过,,,
把,,代入得:
解得:,
抛物线解析式为;
(2)抛物线改写成顶点式为,
抛物线对称轴为直线,
∴对称轴与轴的交点C的坐标为
,
,
设点B的坐标为,,
则,
,
∴
∴点B的坐标为,
设直线解析式为:,
把,代入得:,
解得:,
直线解析式为:.
(3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
设⊙P与AB相切于点F,与x轴相切于点C,如图1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,
∴,
∴,
解得:,
∴点P的坐标为(2,);
②设⊙P与AB相切于点F,与轴相切于点C,如图2:
∴PF⊥AB,PF=PC,
∵AC=3,BC=4, AB=5,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,
∴,
∴,
解得:,
∴点P的坐标为(2,-6),
综上所述,与直线和都相切时,
或.
【点睛】
本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
23、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.
【解析】
(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;
(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.
【详解】
解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,
当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),
将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
解得:,则一次函数解析式为y=x+2;
(2)由题意知BC=2,则△ACB的面积=×2×1=1.
【点睛】
本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.
24、赚了520元
【解析】
(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;
(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.
【详解】
(1)设第一次购书的单价为x元,
根据题意得:+10=,
解得:x=5,
经检验,x=5是原方程的解,
答:第一次购书的进价是5元;
(2)第一次购书为1200÷5=240(本),
第二次购书为240+10=250(本),
第一次赚钱为240×(7﹣5)=480(元),
第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
所以两次共赚钱480+40=520(元),
答:该老板两次售书总体上是赚钱了,共赚了520元.
【点睛】
此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
如皋八校联考2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份如皋八校联考2022年中考数学最后冲刺浓缩精华卷含解析,共16页。
2022届孝感市八校联谊中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届孝感市八校联谊中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了答题时请按要求用笔,已知抛物线y=ax2﹣,下列运算结果是无理数的是,下列运算正确的是等内容,欢迎下载使用。
2022届北京海淀十一校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届北京海淀十一校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图,弹性小球从点P,下列计算正确的是等内容,欢迎下载使用。