|试卷下载
搜索
    上传资料 赚现金
    广东省深圳市福田片区2021-2022学年中考数学最后冲刺浓缩精华卷含解析
    立即下载
    加入资料篮
    广东省深圳市福田片区2021-2022学年中考数学最后冲刺浓缩精华卷含解析01
    广东省深圳市福田片区2021-2022学年中考数学最后冲刺浓缩精华卷含解析02
    广东省深圳市福田片区2021-2022学年中考数学最后冲刺浓缩精华卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳市福田片区2021-2022学年中考数学最后冲刺浓缩精华卷含解析

    展开
    这是一份广东省深圳市福田片区2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列计算中,正确的是,估算的值是在等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )
    A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×2
    2. “a是实数,”这一事件是( )
    A.不可能事件 B.不确定事件 C.随机事件 D.必然事件
    3.下列手机手势解锁图案中,是轴对称图形的是( )
    A. B. C. D.
    4.下列计算中,正确的是(  )
    A.a•3a=4a2 B.2a+3a=5a2
    C.(ab)3=a3b3 D.7a3÷14a2=2a
    5.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是(  )
    A. B.
    C. D.
    6.边长相等的正三角形和正六边形的面积之比为( )
    A.1∶3 B.2∶3 C.1∶6 D.1∶
    7.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )

    A.3.5 B.3 C.4 D.4.5
    8.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为(  )

    A.28 B.26 C.25 D.22
    9.估算的值是在(  )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    10.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为(  )
    A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×108
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_____.

    12.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.

    13.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_____.
    14.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
    15.算术平方根等于本身的实数是__________.
    16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.

    17.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
    三、解答题(共7小题,满分69分)
    18.(10分)综合与实践﹣猜想、证明与拓广
    问题情境:
    数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.
    猜想证明
    (1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:   ;
    (2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:
    小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…
    小丽:连接AF,图中出现新的等腰三角形,如△AFB,…
    小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.
    请你参考同学们的思路,完成证明;
    (3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;
    联系拓广:
    (4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).

    19.(5分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).

    20.(8分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.
    21.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    22.(10分)如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.

    (1)求a,b的值及反比例函数的解析式;
    (2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;
    (3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
    23.(12分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414

    24.(14分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
    (1)根据题意,填写下表:
    时间x(h)
    与A地的距离
    0.5
    1.8
    _____
    甲与A地的距离(km)
    5
      
    20
    乙与A地的距离(km)
    0
    12
      
    (2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
    (3)设甲,乙两人之间的距离为y,当y=12时,求x的值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    全组有x名同学,则每名同学所赠的标本为:(x-1)件,
    那么x名同学共赠:x(x-1)件,
    所以,x(x-1)=132,
    故选B.
    2、D
    【解析】
    是实数,||一定大于等于0,是必然事件,故选D.
    3、D
    【解析】
    根据轴对称图形与中心对称图形的定义进行判断.
    【详解】
    A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
    4、C
    【解析】
    根据同底数幂的运算法则进行判断即可.
    【详解】
    解:A、a•3a=3a2,故原选项计算错误;
    B、2a+3a=5a,故原选项计算错误;
    C、(ab)3=a3b3,故原选项计算正确;
    D、7a3÷14a2=a,故原选项计算错误;
    故选C.
    【点睛】
    本题考点:同底数幂的混合运算.
    5、B
    【解析】
    根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.
    【详解】
    设乙每天完成x个零件,则甲每天完成(x+8)个.
    即得, ,故选B.
    【点睛】
    找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.
    6、C
    【解析】
    解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•=a,∴S△ABC=BC•AD=×1a×a=a1.

    连接OA、OB,过O作OD⊥AB.

    ∵∠AOB==20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•=a,∴S△ABO=BA•OD=×1a×a=a1,∴正六边形的面积为:2a1, ∴边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2.故选C.
    点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.
    7、B
    【解析】
    解:∵∠ACB=90°,∠ABC=60°,
    ∴∠A=10°,
    ∵BD平分∠ABC,
    ∴∠ABD=∠ABC=10°,
    ∴∠A=∠ABD,
    ∴BD=AD=6,
    ∵在Rt△BCD中,P点是BD的中点,
    ∴CP=BD=1.
    故选B.
    8、A
    【解析】
    如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.
    【详解】
    如图,

    由题意得:BM=MN(设为λ),CN=DN=3;
    ∵四边形ABCD为矩形,
    ∴BC=AD=9,∠C=90°,MC=9-λ;
    由勾股定理得:λ2=(9-λ)2+32,
    解得:λ=5,
    ∴五边形ABMND的周长=6+5+5+3+9=28,
    故选A.
    【点睛】
    该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.
    9、C
    【解析】
    求出<<,推出4<<5,即可得出答案.
    【详解】
    ∵<<,
    ∴4<<5,
    ∴的值是在4和5之间.
    故选:C.
    【点睛】
    本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
    10、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:5300万=53000000=.
    故选C.
    【点睛】
    在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出
    考点:不等式的性质
    点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键
    12、4
    【解析】
    ∵AB=2cm,AB=AB1,
    ∴AB1=2cm,
    ∵四边形ABCD是矩形,AE=CE,
    ∴∠ABE=∠AB1E=90°
    ∵AE=CE
    ∴AB1=B1C
    ∴AC=4cm.
    13、1
    【解析】
    先根据平均数求出x,再根据极差定义可得答案.
    【详解】
    由题意知=9,
    解得:x=8,
    ∴这列数据的极差是10-8=1,
    故答案为1.
    【点睛】
    本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键.
    14、等
    【解析】
    根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.
    【详解】
    解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,
    例如:.
    【点睛】
    此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.
    15、0或1
    【解析】
    根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.
    解:1和0的算术平方根等于本身.
    故答案为1和0
    “点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.
    16、61
    【解析】
    分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
    详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;
    如图②:AM2=AC2+CM2=92+4=85;
    如图:AM2=52+(4+2)2=61.

    ∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
    故答案为:61.
    点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.
    17、50.
    【解析】
    根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
    【详解】
    解:如图,米


    设,则,
    则,
    解得,
    故答案为:50.
    【点睛】
    本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.

    三、解答题(共7小题,满分69分)
    18、 (1) GF=GD,GF⊥GD;(2)见解析;(3)见解析;(4) 90°﹣.
    【解析】
    (1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;
    (2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;
    (3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;
    (4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.
    【详解】
    解:(1)GF=GD,GF⊥GD,
    理由:∵四边形ABCD是正方形,
    ∴∠ABD=∠ADB=45°,∠BAD=90°,
    ∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,
    ∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,
    ∴∠DBF=90°,
    ∴GF⊥GD,
    ∵∠BAD=∠BAF=90°,
    ∴点F,A,D在同一条线上,
    ∵∠F=∠ADB,
    ∴GF=GD,
    故答案为GF=GD,GF⊥GD;
    (2)连接AF,∵点D关于直线AE的对称点为点F,
    ∴直线AE是线段DF的垂直平分线,
    ∴AF=AD,GF=GD,
    ∴∠1=∠2,∠3=∠FDG,
    ∴∠1+∠3=∠2+∠FDG,
    ∴∠AFG=∠ADG,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,
    设∠BAF=n,
    ∴∠FAD=90°+n,
    ∵AF=AD=AB,
    ∴∠FAD=∠ABF,
    ∴∠AFB+∠ABF=180°﹣n,
    ∴∠AFB+∠ADG=180°﹣n,
    ∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,
    ∴GF⊥DG,
    (3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,
    ∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,
    ∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=90°,
    ∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,
    ∴∠FDG=∠BDC,
    ∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,
    ∴∠FDB=∠GDC,
    在Rt△BDC中,sin∠DFG==sin45°=,
    在Rt△BDC中,sin∠DBC==sin45°=,
    ∴,
    ∴,
    ∴△BDF∽△CDG,
    ∵∠FDB=∠GDC,
    ∴∠DGC=∠DFG=45°,
    ∴∠DGC=∠FDG,
    ∴CG∥DF;
    (4)90°﹣,理由:如图3,连接AF,BD,
    ∵点D与点F关于AE对称,
    ∴AE是线段DF的垂直平分线,
    ∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,
    ∴∠DAM=90°﹣∠2=90°﹣∠1,
    ∴∠DAF=2∠DAM=180°﹣2∠1,
    ∵四边形ABCD是菱形,
    ∴AB=AD,
    ∴∠AFB=∠ABF=∠DFG+∠1,
    ∵BD是菱形的对角线,
    ∴∠ADB=∠ABD=α,
    在四边形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°
    ∴2∠DFG+2∠1+α﹣2∠1=180°,
    ∴∠DFG=90°﹣.

    【点睛】
    本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.
    19、CD的长度为17﹣17cm.
    【解析】
    在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案.
    【详解】
    解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,
    ∴∠BCE=30°,tan30°=,
    ∴BE=ECtan30°=51×=17(cm);
    ∴CF=AE=34+BE=(34+17)cm,
    在Rt△AFD中,∠FAD=45°,
    ∴∠FDA=45°,
    ∴DF=AF=EC=51cm,
    则CD=FC﹣FD=34+17﹣51=17﹣17,
    答:CD的长度为17﹣17cm.
    【点睛】
    本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.
    20、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元
    【解析】
    (1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;
    (2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.
    【详解】
    (1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,
    由题意,得 ,
    解得x=1500,
    经检验,x=1500是原分式方程的解,
    乙种品牌空调的进价为(1+20%)×1500=1800(元).
    答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;
    (2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,
    由题意,得1500a+1800(10-a)≤16000,
    解得 ≤a,
    设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,
    因为-700<0,
    则w随a的增大而减少,
    当a=7时,w最大,最大为12100元.
    答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.
    【点睛】
    本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.
    21、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:

    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,

    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,

    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    22、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).
    【解析】
    (1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
    (2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;
    (3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.
    【详解】
    (1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,
    ∴a=-1,b=-1,
    ∴A(-1,3),B(3,-1),
    ∵点A(-1,3)在反比例函数y=上,
    ∴k=-1×3=-3,
    ∴反比例函数解析式为y=;
    (2)设点P(n,-n+2),
    ∵A(-1,3),
    ∴C(-1,0),
    ∵B(3,-1),
    ∴D(3,0),
    ∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,
    ∵S△ACP=S△BDP,
    ∴×3×|n+1|=×1×|3−n|,
    ∴n=0或n=−3,
    ∴P(0,2)或(−3,5);
    (3)设M(m,0)(m>0),
    ∵A(−1,3),B(3,−1),
    ∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,
    ∵△MAB是等腰三角形,
    ∴①当MA=MB时,
    ∴(m+1)2+9=(m−3)2+1,
    ∴m=0,(舍)
    ②当MA=AB时,
    ∴(m+1)2+9=32,
    ∴m=−1+或m=−1−(舍),
    ∴M(−1+,0)
    ③当MB=AB时,(m−3)2+1=32,
    ∴m=3+或m=3−(舍),
    ∴M(3+,0)
    即:满足条件的M(−1+,0)或(3+,0).
    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.
    23、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【解析】
    根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
    【详解】
    解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
    在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
    ∵∠CBD=15°,∴BD=CD=2.
    在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.

    答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【点睛】
    本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
    24、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6
    【解析】
    (Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;
    (Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;
    (Ⅲ)根据题意,得,然后分别将y=12代入即可求得答案.
    【详解】
    (Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,
    当时间x=1.8 时,甲离开A的距离是10×1.8=18(km),
    当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),
    此时乙行驶的时间是2﹣1.5=0. 5(时),
    所以乙离开A的距离是40×0.5=20(km),
    故填写下表:

    (Ⅱ)由题意知:
    y1=10x(0≤x≤1.5),
    y2=;
    (Ⅲ)根据题意,得,
    当0≤x≤1.5时,由10x=12,得x=1.2,
    当1.5<x≤2时,由﹣30x+60=12,得x=1.6,
    因此,当y=12时,x的值是1.2或1.6.
    【点睛】
    本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.

    相关试卷

    2022年广东省深圳市宝安区宝安中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年广东省深圳市宝安区宝安中学中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    2021-2022学年四川宜宾县横江片区重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年四川宜宾县横江片区重点名校中考数学最后冲刺浓缩精华卷含解析,共28页。试卷主要包含了二次函数y=3等内容,欢迎下载使用。

    2021-2022学年湖南省岳阳市汨罗市弼时片区中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年湖南省岳阳市汨罗市弼时片区中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,若a与﹣3互为倒数,则a=,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map