广东省深圳市深圳实验校2021-2022学年中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )
A. B. C. D.
2.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是( )
①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.
A.1个 B.2个 C.3个 D.4个
3.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
A.x>﹣2 B.x>0 C.x>1 D.x<1
4.下列四个图形中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
5.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
6.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为( )
A.3 B.4 C.6 D.8
7.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是
A. B. C. D.
8.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
其中正确的是( )
A.①②③ B.①④⑤ C.①②④ D.③④⑤
9.下列计算正确的是
A. B. C. D.
10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=,∠ADC=,则竹竿AB与AD的长度之比为
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为______.
12.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.
13.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
14.已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为________.
15.如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_____.
16.|-3|=_________;
三、解答题(共8题,共72分)
17.(8分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.
18.(8分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
19.(8分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).
20.(8分) (y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
求的值.
21.(8分)如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请判断四边形AEA′F的形状,并说明理由;
(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.
22.(10分)解方程组
23.(12分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:
请根据以上统计图提供的信息,解答下列问题:
(1)共抽取 名学生进行问卷调查;
(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;
(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.
(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.
24.如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.
(1)依题意补全图形;
(2)猜想AE与CD的数量关系,并证明.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析:根据从上面看得到的图形是俯视图,可得答案.
详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,
故选:A.
点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.
2、D
【解析】
等腰直角三角形纸片ABC中,∠C=90°,
∴∠A=∠B=45°,
由折叠可得,∠EDF=∠A=45°,
∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,
∴∠CDE=∠DFB,故①正确;
由折叠可得,DE=AE=3,
∴CD=,
∴BD=BC﹣DC=4﹣>1,
∴BD>CE,故②正确;
∵BC=4,CD=4,
∴BC=CD,故③正确;
∵AC=BC=4,∠C=90°,
∴AB=4,
∵△DCE的周长=1+3+2=4+2,
由折叠可得,DF=AF,
∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,
∴△DCE与△BDF的周长相等,故④正确;
故选D.
点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
3、C
【解析】
试题分析:当x>1时,x+b>kx+4,
即不等式x+b>kx+4的解集为x>1.
故选C.
考点:一次函数与一元一次不等式.
4、D
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
A、是轴对称图形,不是中心对称图形;
B、是轴对称图形,不是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、不是轴对称图形,是中心对称图形.
故选D.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、A
【解析】
【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】由图可得,
甲步行的速度为:240÷4=60米/分,故①正确,
乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,
乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,
故选A.
【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.
6、D
【解析】
连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.
【详解】
连接OA.
∵⊙O的半径为5,CD=2,
∵OD=5-2=3,即OD=3;
又∵AB是⊙O的弦,OC⊥AB,
∴AD=AB;
在直角三角形ODC中,根据勾股定理,得
AD==4,
∴AB=1.
故选D.
【点睛】
本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.
7、D
【解析】
本题主要考查二次函数的解析式
【详解】
解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.
故选D.
【点睛】
本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.
8、B
【解析】
由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.
【详解】
解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),
∴抛物线与x轴的另一交点坐标为(1,1),
∴抛物线过原点,结论①正确;
②∵当x=﹣1时,y>1,
∴a﹣b+c>1,结论②错误;
③当x<1时,y随x增大而减小,③错误;
④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,
∴c=1,
∴b=﹣4a,c=1,
∴4a+b+c=1,
当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴抛物线的顶点坐标为(2,b),结论④正确;
⑤∵抛物线的顶点坐标为(2,b),
∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;
综上所述,正确的结论有:①④⑤.
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
9、B
【解析】
试题分析:根据合并同类项的法则,可知,故A不正确;
根据同底数幂的除法,知,故B正确;
根据幂的乘方,知,故C不正确;
根据完全平方公式,知,故D不正确.
故选B.
点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
10、B
【解析】
在两个直角三角形中,分别求出AB、AD即可解决问题;
【详解】
在Rt△ABC中,AB=,
在Rt△ACD中,AD=,
∴AB:AD=:=,
故选B.
【点睛】
本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
解:将170000用科学记数法表示为:1.7×1.故答案为1.7×1.
12、2
【解析】
根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.
【详解】
由题意得,(x+2)2﹣(x+2)(x﹣2)=6,
整理得,3x+3=6,
解得,x=2,
故答案为2.
【点睛】
本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.
13、40°
【解析】
根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
【详解】
根据旋转的性质,可得:AB=AD,∠BAD=100°,
∴∠B=∠ADB=×(180°−100°)=40°.
故填:40°.
【点睛】
本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
14、-10
【解析】
根据根与系数的关系得出-2+4=-m,-2×4=n,求出即可.
【详解】
∵关于x的一元二次方程的两个实数根分别为x =-2,x =4,
∴−2+4=−m,−2×4=n,
解得:m=−2,n=−8,
∴m+n=−10,
故答案为:-10
【点睛】
此题考查根与系数的关系,掌握运算法则是解题关键
15、.
【解析】
由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.
【详解】
∵六边形ABCDEF是正六边形,
∴AB=BC=AF,∠ABC=∠BAF=120°,
∴∠ABF=∠BAC=∠BCA=30°,
∴AG=BG,∠CBG=90°,
∴CG=2BG=2AG,
∴=;
故答案为:.
【点睛】
本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.
16、1
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-1|=1.
故答案为1.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)BC=,AD=.
【解析】
分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
(2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
详解:(1)如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠CBE,
∴∠OEB=∠CBE,
∴OE∥BC,
又∵∠C=90°,
∴∠AEO=90°,即OE⊥AC,
∴AC为⊙O的切线;
(2)∵ED⊥BE,
∴∠BED=∠C=90°,
又∵∠DBE=∠EBC,
∴△BDE∽△BEC,
∴,即,
∴BC=;
∵∠AEO=∠C=90°,∠A=∠A,
∴△AOE∽△ABC,
∴,即,
解得:AD=.
点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.
18、(1)A(,0)、B(3,0).
(2)存在.S△PBC最大值为
(3)或时,△BDM为直角三角形.
【解析】
(1)在中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】
解:(1)令y=0,则,
∵m<0,∴,解得:,.
∴A(,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为(),
把C(0,)代入可得,.
∴C1的表达式为:,即.
设P(p,),
∴ S△PBC = S△POC+ S△BOP–S△BOC=.
∵<0,∴当时,S△PBC最大值为.
(3)由C2可知: B(3,0),D(0,),M(1,),
∴BD2=,BM2=,DM2=.
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即+=,
解得:,(舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即+=,
解得:,(舍去) .
综上所述,或时,△BDM为直角三角形.
19、见解析
【解析】
根据题意作∠CBA=∠CAP即可使得△ABC~△PAC.
【详解】
如图,作∠CBA=∠CAP,P点为所求.
【点睛】
此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.
20、1
【解析】
通过已知等式化简得到未知量的关系,代入目标式子求值.
【详解】
∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,
∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,
∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,
∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.
∵x,y,z均为实数,
∴x=y=z.
∴
21、(1)四边形AEA′F为菱形.理由见解析;(2)1.
【解析】
(1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=••6•6,然后利用算术平方根的定义求AE即可.
【详解】
(1)四边形AEA′F为菱形.
理由如下:
∵AB=AC,
∴∠B=∠C,
∵EF∥BC,
∴∠AEF=∠B,∠AFE=∠C,
∴∠AEF=∠AFE,
∴AE=AF,
∵△AEF沿着直线EF向下翻折,得到△A′EF,
∴AE=A′E,AF=A′F,
∴AE=A′E=AF=A′F,
∴四边形AEA′F为菱形;
(2)∵四边形AEA′F是正方形,
∴∠A=90°,
∴△ABC为等腰直角三角形,
∴AB=AC=BC=×6=6,
∵正方形AEA′F的面积是△ABC的一半,
∴AE2=••6•6,
∴AE=1.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
22、
【解析】
解:由①得③
把③代入②得
把代人③得
∴原方程组的解为
23、(1)1;(2)详见解析;(3)750;(4).
【解析】
(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;
(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;
(3)计算足球的百分比,根据样本估计总体,即可解答;
(4)利用概率公式计算即可.
【详解】
(1)30÷15%=1(人).
答:共抽取1名学生进行问卷调查;
故答案为1.
(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.
如图所示:
(3)3000×0.25=750(人).
答:全校学生喜欢足球运动的人数为750人.
(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)
共有25种等可能的结果数,选同一项目的结果数为5,
所以甲乙两人中有且选同一项目的概率P(A)=.
【点睛】
本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
24、 (1)见解析;(2)见解析.
【解析】
(1)根据题意画出图形即可;
(2)利用等腰三角形的性质得∠A=45∘.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.
【详解】
解:(1)如图:
(2)AE与 CD的数量关系为AE=CD.
证明:∵∠C=90°,AC=BC,
∴∠A=45°.
∵DE⊥AB,
∴∠ADE=∠A=45°.
∴AE=DE,
∵BD平分∠ABC,
∴CD=DE,
∴AE=CD.
【点睛】
此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据题意作辅助线.
深圳市华侨实验中学2021-2022学年中考适应性考试数学试题含解析: 这是一份深圳市华侨实验中学2021-2022学年中考适应性考试数学试题含解析,共21页。
广东省深圳市外国语校2021-2022学年中考适应性考试数学试题含解析: 这是一份广东省深圳市外国语校2021-2022学年中考适应性考试数学试题含解析,共14页。试卷主要包含了已知a=等内容,欢迎下载使用。
广东省深圳市福田区深圳实验校2021-2022学年中考数学模拟预测题含解析: 这是一份广东省深圳市福田区深圳实验校2021-2022学年中考数学模拟预测题含解析,共25页。试卷主要包含了方程的解是等内容,欢迎下载使用。