广西省重点中学2022年中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为( )
A.1:2 B.1:3 C.1:4 D.1:1
2.估计介于( )
A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
3.的相反数是
A. B.2 C. D.
4.二次函数(a≠0)的图象如图所示,则下列命题中正确的是( )
A.a >b>c
B.一次函数y=ax +c的图象不经第四象限
C.m(am+b)+b<a(m是任意实数)
D.3b+2c>0
5.下列各式计算正确的是( )
A. B. C. D.
6.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
A. B. C. D.
7.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:
x
-1
0
1
3
y
3
3
下列结论:
(1)abc<0
(2)当x>1时,y的值随x值的增大而减小;
(3)16a+4b+c<0
(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为( )
A.4个 B.3个 C.2个 D.1个
8.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:
①小明家距学校4千米;
②小明上学所用的时间为12分钟;
③小明上坡的速度是0.5千米/分钟;
④小明放学回家所用时间为15分钟.
其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
9.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )
A.小明中途休息用了20分钟
B.小明休息前爬山的平均速度为每分钟70米
C.小明在上述过程中所走的路程为6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
10.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
12.当a,b互为相反数,则代数式a2+ab﹣2的值为_____.
13.方程=1的解是_____.
14.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.
(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
S矩形EBMF=S△ABC-(______________+______________).
易知,S△ADC=S△ABC,______________=______________,______________=______________.
可得S矩形NFGD=S矩形EBMF.
15.若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|++3|a﹣b|=_____.
16.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.
17.已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.
(I)如图①,若∠F=50°,求∠BGF的大小;
(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.
19.(5分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.
20.(8分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.
(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;
(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.
21.(10分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.
22.(10分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.
求证:;
若的直径长8,,求BE的长.
23.(12分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.
24.(14分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.
【详解】
解:∵D、E分别为△ABC的边AB、AC上的中点,
∴DE是△ABC的中位线,
∴DE∥BC,DE=BC,
∴△ADE∽△ABC,
∴△ADE的面积:△ABC的面积==1:4,
∴△ADE的面积:四边形BCED的面积=1:3;
故选B.
【点睛】
本题考查三角形中位线定理及相似三角形的判定与性质.
2、C
【解析】
解:∵,
∴,即
∴估计在2~3之间
故选C.
【点睛】
本题考查估计无理数的大小.
3、B
【解析】
根据相反数的性质可得结果.
【详解】
因为-2+2=0,所以﹣2的相反数是2,
故选B.
【点睛】
本题考查求相反数,熟记相反数的性质是解题的关键 .
4、D
【解析】
解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;
B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;
C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;
D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②
①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;
故选D.
点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
5、B
【解析】
A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
B选项中,∵,∴本选项正确;
C选项中,∵,而不是等于,∴本选项错误;
D选项中,∵,∴本选项错误;
故选B.
6、A
【解析】
解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
7、B
【解析】
(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;
(2)求得对称轴,即可判定此结论错误;
(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;
(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.
【详解】
(1)∵x=-1时y=-,x=0时,y=3,x=1时,y=,
∴,
解得
∴abc<0,故正确;
(2)∵y=-x2+x+3,
∴对称轴为直线x=-=,
所以,当x>时,y的值随x值的增大而减小,故错误;
(3)∵对称轴为直线x=,
∴当x=4和x=-1时对应的函数值相同,
∴16a+4b+c<0,故正确;
(4)当x=3时,二次函数y=ax2+bx+c=3,
∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;
综上所述,结论正确的是(1)(3)(4).
故选:B.
【点睛】
本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.
8、C
【解析】
从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.
【详解】
解:①小明家距学校4千米,正确;
②小明上学所用的时间为12分钟,正确;
③小明上坡的速度是千米/分钟,错误;
④小明放学回家所用时间为3+2+10=15分钟,正确;
故选:C.
【点睛】
本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
9、C
【解析】
根据图像,结合行程问题的数量关系逐项分析可得出答案.
【详解】
从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;
小明休息前爬山的平均速度为:(米/分),B正确;
小明在上述过程中所走的路程为3800米,C错误;
小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确.
故选C.
考点:函数的图象、行程问题.
10、C
【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.
考点:用列表法(或树形图法)求概率.
二、填空题(共7小题,每小题3分,满分21分)
11、2或2.
【解析】
本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
【详解】
解:
当点在线段的延长线上时,如图3所示.
过点作于,
是正方形的对角线,
,
,
在中,由勾股定理,得:
,
在和中,,
,
,
当点在线段上时,如图4所示.
过作于.
是正方形的对角线,
,
在中,由勾股定理,得:
在和中,,
,
,
故答案为或.
【点睛】
本题主要考查了勾股定理和三角形全等的证明.
12、﹣1.
【解析】
分析:
由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.
详解:
∵a与b互为相反数,
∴a+b=0,
∴a1+ab-1=a(a+b)-1=0-1=-1.
故答案为:-1.
点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.
13、x=3
【解析】
去分母得:x﹣1=2,
解得:x=3,
经检验x=3是分式方程的解,
故答案为3.
【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.
14、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC
【解析】
根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.
【详解】
S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-( S△ANF+S△FCM).
易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,
可得S矩形NFGD=S矩形EBMF.
故答案分别为 S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.
【点睛】
本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.
15、﹣5a+4b﹣3c.
【解析】
直接利用数轴结合二次根式、绝对值的性质化简得出答案.
【详解】
由数轴可得:a+c<0,b-c>0,a-b<0,
故原式=-2(a+c)+b-c-3(a-b)
=-2a-2c+b-c-3a+3b
=-5a+4b-3c.
故答案为-5a+4b-3c.
【点睛】
此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键.
16、2
【解析】
连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.
【详解】
解:如图,连接PB、PC,
由二次函数的性质,OB=PB,PC=AC,
∵△ODA是等边三角形,
∴∠AOD=∠OAD=60°,
∴△POB和△ACP是等边三角形,
∵A(4,0),
∴OA=4,
∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×=2,
即两个二次函数的最大值之和等于2.
故答案为2.
【点睛】
本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.
17、m>1.
【解析】
分析:根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.
详解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.
故答案为m>1.
点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.
三、解答题(共7小题,满分69分)
18、(I)65°;(II)72°
【解析】
(I)如图①,连接OB,先利用切线的性质得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF的度数;
(II)如图②,连接OB,BO的延长线交AC于H,利用切线的性质得OB⊥BF,再利用AC∥BF得到BH⊥AC,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG的度数.
【详解】
解:(I)如图①,连接OB,
∵BF为⊙O的切线,
∴OB⊥BF,
∴∠OBF=90°,
∵OA⊥CD,
∴∠OED=90°,
∴∠AOB=180°﹣∠F=180°﹣50°=130°,
∵OA=OB,
∴∠1=∠A=(180°﹣130°)=25°,
∴∠2=90°﹣∠1=65°,
∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;
(II)如图②,连接OB,BO的延长线交AC于H,
∵BF为⊙O的切线,
∴OB⊥BF,
∵AC∥BF,
∴BH⊥AC,
与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,
∵OA=OB,
∴∠OBA=∠OAB=(180°﹣144°)=18°,
∵∠AOB=∠OHA+∠OAH,
∴∠OAH=144°﹣90°=54°,
∴∠BAC=∠OAH+∠OAB=54°+18°=72°,
∴∠BDG=∠BAC=72°.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.
19、(1)证明见解析(2)13
【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
【详解】
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)∵△ACB和△ECD都是等腰直角三角形
∴∠BAC=∠B=45°
∵△ACE≌△BCD
∴AE=BD=12,∠EAC=∠B=45°
∴∠EAD=∠EAC+∠BAC=90°,
∴△EAD是直角三角形
【点睛】
解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
20、 (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.
【解析】
(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;
(2)利用(1)中所求,分别得出两种服装获利即可得出答案.
【详解】
解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:
,
解得:,
答:该车间应安排4天加工童装,6天加工成人装;
(2)∵45×4=180,30×6=180,
∴180×80+180×120=180×(80+120)=36000(元),
答:该车间加工完这批服装后,共可获利36000元.
【点睛】
本题考查二元一次方程组的应用.
21、(1)见解析;(2)+
【解析】
(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;
(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.
【详解】
(1)直线AB是⊙O的切线,理由如下:
连接OA.
∵OC=BC,AC=OB,
∴OC=BC=AC=OA,
∴△ACO是等边三角形,
∴∠O=∠OCA=60°,
又∵∠B=∠CAB,
∴∠B=30°,
∴∠OAB=90°.
∴AB是⊙O的切线.
(2)作AE⊥CD于点E.
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=;
∵∠D=30°,
∴AD=2.
【点睛】
本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
22、(1)证明见解析;(2).
【解析】
先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;
作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.
【详解】
证明:,,
,
是的切线,
,
,
.
平分,
,
,
;
解:作于F,如图,
的直径长8,
.
,
,
,
,
在中,
设,则,
,即,解得,
.
故答案为(1)证明见解析;(2) .
【点睛】
本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.
23、一次函数解析式为;反比例函数解析式为;.
【解析】
(1)根据A(-1,0)代入y=kx+2,即可得到k的值;
(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;
(3)先根据D(a,0),PD∥y轴,即可得出P(a,2a+2),Q(a,),再根据PQ=2QD,即可得,进而求得D点的坐标.
【详解】
(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,
∴一次函数解析式为y=2x+2;
把C(1,n)代入y=2x+2得n=4,
∴C(1,4),
把C(1,4)代入y=得m=1×4=4,
∴反比例函数解析式为y=;
(2)∵PD∥y轴,
而D(a,0),
∴P(a,2a+2),Q(a,),
∵PQ=2QD,
∴2a+2﹣=2×,
整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),
∴D(2,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.
24、2+1
【解析】
根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.
【详解】
原式=-1+3+
= -1+3+
=2+1.
【点睛】
本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.
广西省贵港市重点中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份广西省贵港市重点中学2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列说法等内容,欢迎下载使用。
广西省重点中学2022年中考二模数学试题含解析: 这是一份广西省重点中学2022年中考二模数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,如图,立体图形的俯视图是,下列分式是最简分式的是等内容,欢迎下载使用。
2022年郑州市重点中学中考联考数学试题含解析: 这是一份2022年郑州市重点中学中考联考数学试题含解析,共20页。试卷主要包含了如图所示的几何体的左视图是,某校八,如果将直线l1等内容,欢迎下载使用。