|试卷下载
搜索
    上传资料 赚现金
    广西自治区钦州市重点达标名校2022年中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    广西自治区钦州市重点达标名校2022年中考数学考前最后一卷含解析01
    广西自治区钦州市重点达标名校2022年中考数学考前最后一卷含解析02
    广西自治区钦州市重点达标名校2022年中考数学考前最后一卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西自治区钦州市重点达标名校2022年中考数学考前最后一卷含解析

    展开
    这是一份广西自治区钦州市重点达标名校2022年中考数学考前最后一卷含解析,共25页。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有(  )

    A.4个 B.5个 C.6个 D.7个
    2.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
    次序
    第一次
    第二次
    第三次
    第四次
    第五次
    甲命中的环数(环)
    6
    7
    8
    6
    8
    乙命中的环数(环)
    5
    10
    7
    6
    7
    根据以上数据,下列说法正确的是( )
    A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
    C.甲、乙成绩的众数相同 D.甲的成绩更稳定
    3.函数的图像位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )

    A. B. C. D.
    5.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为(  )
    A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×1011
    6.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
    A.若AB=CD,则四边形ABCD一定是等腰梯形;
    B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
    C.若,则四边形ABCD一定是矩形;
    D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
    7.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为(  )
    A.180元 B.200元 C.225元 D.259.2元
    8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是

    A.3 B. C. D.4
    9.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=(  )

    A.1 B. C. D.
    10.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )

    A.2πcm B.4πcm C.6πcm D.8πcm
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为 .

    12.分解因式:a2b+4ab+4b=______.
    13.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .
    14.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.

    15.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.
    16.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.

    三、解答题(共8题,共72分)
    17.(8分)吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是   .列表:
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5
    6

    y


    m
    ﹣1

    ﹣5
    n
    ﹣1



    表中m=   ,n=   .描点、连线
    在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
    观察所画出的函数图象,写出该函数的两条性质:
    ①   ;
    ②   .
    18.(8分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
    (1)求一次至少购买多少只计算器,才能以最低价购买?
    (2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
    (3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
    19.(8分)已知,如图,是的平分线,,点在上,,,垂足分别是、.试说明:.

    20.(8分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)
    (1)求a、b的值;
    (2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;
    (3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.

    21.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
    求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
    22.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
    (1)求抛物线C的函数表达式;
    (2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
    (3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.

    23.(12分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    24.为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.
    请你根据图中所提供的信息,完成下列问题:
    本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.
    【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:

    则搭成这个几何体的小正方体最少有5个,
    故选B.
    【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.
    【详解】
    请在此输入详解!
    【点睛】
    请在此输入点睛!
    2、D
    【解析】
    根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
    【详解】
    把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
    把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
    ∴甲、乙成绩的中位数相同,故选项B错误;
    根据表格中数据可知,甲的众数是8环,乙的众数是7环,
    ∴甲、乙成绩的众数不同,故选项C错误;
    甲命中的环数的平均数为:(环),
    乙命中的环数的平均数为:(环),
    ∴甲的平均数等于乙的平均数,故选项A错误;
    甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
    乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
    因为2.8>0.8,
    所以甲的稳定性大,故选项D正确.
    故选D.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.
    3、D
    【解析】
    根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.
    【详解】
    解:函数的图象位于第四象限.
    故选:D.
    【点睛】
    此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.
    4、C
    【解析】
    根据平行四边形的性质和圆周角定理可得出答案.
    【详解】
    根据平行四边形的性质可知∠B=∠AOC,
    根据圆内接四边形的对角互补可知∠B+∠D=180°,
    根据圆周角定理可知∠D=∠AOC,
    因此∠B+∠D=∠AOC+∠AOC=180°,
    解得∠AOC=120°,
    因此∠ADC=60°.
    故选C
    【点睛】
    该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.
    5、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
    【详解】
    解:将546亿用科学记数法表示为:5.46×1010 ,故本题选C.
    【点睛】
    本题考查的是科学计数法,熟练掌握它的定义是解题的关键.
    6、C
    【解析】
    A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
    B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
    C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
    D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
    故选C.
    7、A
    【解析】
    设这种商品每件进价为x元,根据题中的等量关系列方程求解.
    【详解】
    设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.
    【点睛】
    本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
    8、B
    【解析】
    试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.
    连接AC,
    ∵∠AOC=∠ADC=90°,AC=AC,OC=CD,
    ∴Rt△AOC≌Rt△ADC,
    ∴AD=AO=2,
    连接CD,设EF=x,
    ∴DE2=EF•OE,
    ∵CF=1,
    ∴DE=,
    ∴△CDE∽△AOE,
    ∴=,
    即=,
    解得x=,
    S△ABE===.
    故选B.

    考点:1.切线的性质;2.三角形的面积.
    9、D
    【解析】
    解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.
    点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.
    10、B
    【解析】
    首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.
    【详解】
    解:如图,连接OC,AO,

    ∵大圆的一条弦AB与小圆相切,
    ∴OC⊥AB,
    ∵OA=6,OC=3,
    ∴OA=2OC,
    ∴∠A=30°,
    ∴∠AOC=60°,
    ∴∠AOB=120°,
    ∴劣弧AB的长= =4π,
    故选B.
    【点睛】
    本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、.
    【解析】
    试题分析:连接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=,PC=2OC=2,即可得PB=PO﹣OB=.

    考点:切线的性质;锐角三角函数.
    12、b(a+2)2
    【解析】
    根据公式法和提公因式法综合运算即可
    【详解】
    a2b+4ab+4b=.
    故本题正确答案为.
    【点睛】
    本题主要考查因式分解.
    13、
    【解析】
    画树状图为:

    共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,
    所以点P(a,b)在平面直角坐标系中第二象限内的概率==.
    故答案为.
    14、5.
    【解析】
    试题解析:过E作EM⊥AB于M,

    ∵四边形ABCD是正方形,
    ∴AD=BC=CD=AB,
    ∴EM=AD,BM=CE,
    ∵△ABE的面积为8,
    ∴×AB×EM=8,
    解得:EM=4,
    即AD=DC=BC=AB=4,
    ∵CE=3,
    由勾股定理得:BE==5.
    考点:1.正方形的性质;2.三角形的面积;3.勾股定理.
    15、
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    67000000000的小数点向左移动10位得到6.7,
    所以67000000000用科学记数法表示为,
    故答案为:.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、1
    【解析】
    根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.
    【详解】
    由图可得,P0P1=1,P0P2=1,P0P3=1;
    P0P4=2,P0P5=2,P0P6=2;
    P0P7=3,P0P8=3,P0P9=3;
    ∵2018=3×672+2,
    ∴点P2018在正南方向上,
    ∴P0P2018=672+1=1,
    故答案为1.
    【点睛】
    本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.

    三、解答题(共8题,共72分)
    17、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x=2对称
    【解析】
    (1)分式的分母不等于零;
    (2)把自变量的值代入即可求解;
    (3)根据题意描点、连线即可;
    (4)观察图象即可得出该函数的其他性质.
    【详解】
    (1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.
    故答案为:一切实数;
    (2)m=,n=,
    故答案为:-,-;
    (3)建立适当的直角坐标系,描点画出图形,如下图所示:

    (4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.
    故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称
    【点睛】
    本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.
    18、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
    【解析】
    试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
    (3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
    (3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
    试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
    答:一次至少买1只,才能以最低价购买;
    (3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
    综上所述:;
    (3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
    ②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
    且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
    即出现了卖46只赚的钱比卖1只赚的钱多的现象.
    当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
    考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
    19、见详解
    【解析】
    根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.
    【详解】
    证明:∵BD为∠ABC的平分线,
    ∴∠ABD=∠CBD,
    在△ABD和△CBD中,

    ∴△ABD≌△CBD(SAS),
    ∴∠ADB=∠CDB,
    ∵点P在BD上,PM⊥AD,PN⊥CD,
    ∴PM=PN.
    【点睛】
    本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.
    20、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    【解析】
    试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.
    试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点, ∴C(0,1),
    ∵点C在直线l2上, ∴b=1, ∴直线l2的解析式为y=ax+1, ∵点B在直线l2上,
    ∴2a+1=0, ∴a=﹣;
    (2)、解:由(1)知,l1的解析式为y=x+1,令y=0, ∴x=﹣1,
    由图象知,点Q在点A,B之间, ∴﹣1<n<2
    (3)、解:如图,

    ∵△PAC是等腰三角形, ∴①点x轴正半轴上时,当AC=P1C时,
    ∵CO⊥x轴, ∴OP1=OA=1, ∴BP1=OB﹣OP1=2﹣1=1, ∴1÷1=1s,
    ②当P2A=P2C时,易知点P2与O重合, ∴BP2=OB=2, ∴2÷1=2s,
    ③点P在x轴负半轴时,AP3=AC, ∵A(﹣1,0),C(0,1), ∴AC=, ∴AP3=,
    ∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,
    ∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣ )s,
    即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.
    21、(1),;(2)P,.
    【解析】
    试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
    试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(1,3).
    把点A(1,3)代入反比例函数y=,
    得:3=k,
    ∴反比例函数的表达式y=,
    联立两个函数关系式成方程组得:,
    解得:,或,
    ∴点B的坐标为(3,1).
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.

    ∵点B、D关于x轴对称,点B的坐标为(3,1),
    ∴点D的坐标为(3,- 1).
    设直线AD的解析式为y=mx+n,
    把A,D两点代入得:,
    解得:,
    ∴直线AD的解析式为y=-2x+1.
    令y=-2x+1中y=0,则-2x+1=0,
    解得:x=,
    ∴点P的坐标为(,0).
    S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
    =×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
    =.
    考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
    22、(1);(2)2<m<;(1)m=6或m=﹣1.
    【解析】
    (1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;
    (2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,由,消去y得到,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;
    (1)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.
    【详解】
    (1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,
    ∴抛物线C的函数表达式为.
    (2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,
    由,
    消去y得到 ,
    由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,
    解得2<m<,
    ∴满足条件的m的取值范围为2<m<.
    (1)结论:四边形PMP′N能成为正方形.
    理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.

    由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在上,∴,解得m=﹣1或﹣﹣1(舍弃),∴m=﹣1时,四边形PMP′N是正方形.
    情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),
    把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍弃),
    ∴m=6时,四边形PMP′N是正方形.

    综上所述:m=6或m=﹣1时,四边形PMP′N是正方形.
    23、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:

    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,

    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,

    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    24、(1)120;(2)  ;(3)答案见解析;(4)1650.
    【解析】
    (1)依据节目B的数据,即可得到调查的学生人数;
    (2)依据A部分的百分比,即可得到A部分所占圆心角的度数;
    (3)求得C部分的人数,即可将条形统计图补充完整;
    (4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.
    【详解】

    故答案为120;

    故答案为;
    :,
    如图所示:


    答:该校最喜爱中国诗词大会的学生有1650名.
    【点睛】
    本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.

    相关试卷

    广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了下列事件中,必然事件是,初三,下列运算正确的是等内容,欢迎下载使用。

    2022年重庆市重点达标名校中考数学考前最后一卷含解析: 这是一份2022年重庆市重点达标名校中考数学考前最后一卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程有实数根的是等内容,欢迎下载使用。

    2022年重庆开州区重点达标名校中考数学考前最后一卷含解析: 这是一份2022年重庆开州区重点达标名校中考数学考前最后一卷含解析,共28页。试卷主要包含了剪纸是我国传统的民间艺术等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map