|试卷下载
搜索
    上传资料 赚现金
    北京市一零一中学2022年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    北京市一零一中学2022年十校联考最后数学试题含解析01
    北京市一零一中学2022年十校联考最后数学试题含解析02
    北京市一零一中学2022年十校联考最后数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市一零一中学2022年十校联考最后数学试题含解析

    展开
    这是一份北京市一零一中学2022年十校联考最后数学试题含解析,共23页。试卷主要包含了下列各式中的变形,错误的是,若二次函数的图象经过点等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.的倒数的绝对值是(  )
    A. B. C. D.
    2.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    3.的相反数是(  )
    A. B.2 C. D.
    4.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:
    x

    –2
    –1
    0
    1
    2

    y

    0
    4
    6
    6
    4

    从上表可知,下列说法错误的是
    A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)
    C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
    5.在3,0,-2,- 四个数中,最小的数是( )
    A.3 B.0 C.-2 D.-
    6.在解方程-1=时,两边同时乘6,去分母后,正确的是(  )
    A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)
    C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)
    7.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是  

    A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D
    8.已知方程x2﹣x﹣2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为(  )
    A.﹣3 B.1 C.3 D.﹣1
    9.下列各式中的变形,错误的是((  )
    A. B. C. D.
    10.若二次函数的图象经过点(﹣1,0),则方程的解为( )
    A., B., C., D.,
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知:=,则的值是______.
    12.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.

    13.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是__.
    14.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=,则阴影部分的面积是___.

    15.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
    16.如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为______.

    三、解答题(共8题,共72分)
    17.(8分)综合与探究:
    如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
    (1)求A、B两点的坐标及直线l的表达式;
    (2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
    ①请直接写出A′的坐标(用含字母t的式子表示);
    ②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
    (3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.

    18.(8分)已知抛物线y=﹣2x2+4x+c.
    (1)若抛物线与x轴有两个交点,求c的取值范围;
    (2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.
    19.(8分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
    (1)求证:△AEF是等腰直角三角形;
    (2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
    (3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.

    20.(8分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
    (1)求证:AE是⊙O的切线;
    (2)若AE=12,CD=10,求⊙O的半径。

    21.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.
    求m和b的值;直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.
    ①若点P在线段DA上,且△ACP的面积为10,求t的值;
    ②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.
    22.(10分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
    求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
    23.(12分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?
    24.计算:(π﹣3.14)0﹣2﹣|﹣3|.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    直接利用倒数的定义结合绝对值的性质分析得出答案.
    【详解】
    解:−的倒数为−,则−的绝对值是:.
    故答案选:D.
    【点睛】
    本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.
    2、C
    【解析】
    试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
    第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
    平均数==38.4
    方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
    ∴选项A,B、D错误;
    故选C.
    考点:方差;加权平均数;中位数;众数.
    3、D
    【解析】
    因为-+=0,所以-的相反数是.
    故选D.
    4、C
    【解析】
    当x=-2时,y=0,
    ∴抛物线过(-2,0),
    ∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
    当x=0时,y=6,
    ∴抛物线与y轴的交点坐标为(0,6),故B正确;
    当x=0和x=1时,y=6,
    ∴对称轴为x=,故C错误;
    当x<时,y随x的增大而增大,
    ∴抛物线在对称轴左侧部分是上升的,故D正确;
    故选C.
    5、C
    【解析】
    根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
    【详解】
    因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,
    所以,
    所以最小的数是,
    故选C.
    【点睛】
    此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.
    6、D
    【解析】
    解: ,∴3(x﹣1)﹣6=2(3x+1),故选D.
    点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.
    7、B
    【解析】
    先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.
    【详解】
    解:∵直径CD⊥弦AB,
    ∴弧AD =弧BD,
    ∴∠C=∠BOD.
    故选B.
    【点睛】
    本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    8、D
    【解析】
    分析:根据一元二次方程根与系数的关系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2计算即可.
    详解:由题意得,a=1,b=-1,c=-2,
    ∴,,
    ∴x1+x2+x1x2=1+(-2)=-1.
    故选D.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .
    9、D
    【解析】
    根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
    【详解】
    A、,故A正确;
    B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
    C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
    D、≠,故D错误;
    故选:D.
    【点睛】
    本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
    10、C
    【解析】
    ∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
    故选C.
    考点:抛物线与x轴的交点.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、–
    【解析】
    根据已知等式设a=2k,b=3k,代入式子可求出答案.
    【详解】
    解:由,可设a=2k,b=3k,(k≠0),
    故:,
    故答案:.
    【点睛】
    此题主要考查比例的性质,a、b都用k表示是解题的关键.
    12、
    【解析】
    根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.
    【详解】
    抛物线的对称轴为x=-.
    ∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,
    ∴点C的横坐标为-1.
    ∵四边形ABCD为菱形,
    ∴AB=BC=AD=1,
    ∴点D的坐标为(-2,0),OA=2.
    在Rt△ABC中,AB=1,OA=2,
    ∴OB==4,
    ∴S菱形ABCD=AD•OB=1×4=3.
    故答案为3.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.
    13、
    【解析】
    列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
    【详解】
    解:列表如下:

    -2
    -1
    1
    2
    -2

    2
    -2
    -4
    -1
    2

    -1
    -2
    1
    -2
    -1

    2
    2
    -4
    -2
    2

    由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
    ∴积为大于-4小于2的概率为=,
    故答案为:.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    14、﹣
    【解析】
    连接OB.
    ∵AB是⊙O切线,
    ∴OB⊥AB,
    ∵OC=OB,∠C=30°,
    ∴∠C=∠OBC=30°,
    ∴∠AOB=∠C+∠OBC=60°,
    在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,
    ∴OB=1,
    ∴S阴=S△ABO﹣S扇形OBD=×1×﹣ =﹣ .

    15、②④
    【解析】
    根据分式的定义,将每个式子计算后,即可求解.
    【详解】
    =1不是分式,=,=3不是分式,=故选②④.
    【点睛】
    本题考查分式的判断,解题的关键是清楚分式的定义.
    16、1或1﹣2
    【解析】
    当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值.
    【详解】
    解:如图1所示:

    由翻折的性质可知PF=CF=1,
    ∵ABFE为正方形,边长为2,
    ∴AF=2.
    ∴PA=1﹣2.
    如图2所示:

    由翻折的性质可知PF=FC=1.
    ∵ABFE为正方形,
    ∴BE为AF的垂直平分线.
    ∴AP=PF=1.
    故答案为:1或1﹣2.
    【点睛】
    本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
    (2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
    (3)存在,P点坐标为(,)或(,﹣).
    【解析】
    (1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
    (2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
    ②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
    (3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
    【详解】
    (1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
    设直线l的解析式为y=kx+b,
    把A(﹣1,0),D(0,﹣)代入得,解得,
    ∴直线l的解析式为y=﹣x﹣;
    (2)①作A′H⊥x轴于H,如图,

    ∵OA=1,OD=,
    ∴∠OAD=60°,
    ∵EF∥AD,
    ∴∠AEF=60°,
    ∵点A 关于直线l的对称点为A′,
    ∴EA=EA′=t,∠A′EF=∠AEF=60°,
    在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
    ∴OH=OE+EH=t﹣1+t=t﹣1,
    ∴A′(t﹣1, t);
    ②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
    解得t1=0(舍去),t2=2,
    ∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
    此时四边形A′BEF为菱形,理由如下:
    当t=2时,A′点的坐标为(2,),E(1,0),
    ∵∠OEF=60°
    ∴OF=OE=,EF=2OE=2,
    ∴F(0,),
    ∴A′F∥x轴,
    ∵A′F=BE=2,A′F∥BE,
    ∴四边形A′BEF为平行四边形,
    而EF=BE=2,
    ∴四边形A′BEF为菱形;
    (3)存在,如图:

    当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
    ∵OE=t﹣1=,
    ∴此时P点坐标为(,);
    当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,

    ∵∠AEA′=120°,
    ∴∠A′EB=60°,
    ∴∠EBA′=30°
    ∴BQ=A′Q=•t=t,
    ∴t﹣1+t=3,解得t=,
    此时A′(1,),E(,0),
    点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
    综上所述,满足条件的P点坐标为(,)或(,﹣).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
    18、 (1)c>﹣2;(2) x1=﹣1,x2=1.
    【解析】
    (1)根据抛物线与x轴有两个交点,b2-4ac>0列不等式求解即可;
    (2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.
    【详解】
    (1)解:∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    即16+8c>0,
    解得c>﹣2;
    (2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,
    ∵抛物线经过点(﹣1,0),
    ∴抛物线与x轴的另一个交点为(1,0),
    ∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.
    【点睛】
    考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.
    19、(1)证明见解析;(2)证明见解析;(3)4.
    【解析】
    试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
    (2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
    (3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
    试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
    (2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
    (3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.

    点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
    20、(1)证明见解析;(2).
    【解析】
    (1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
    (2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
    【详解】
    (1)证明:连接OA,交BC于G,

    ∵∠ABC=∠ADB.∠ABC=∠ADE,
    ∴∠ADB=∠ADE,
    ∴,
    ∴OA⊥BC,
    ∵四边形ABCE是平行四边形,
    ∴AE∥BC,
    ∴OA⊥AE,
    ∴AE是⊙O的切线;
    (2)连接OC,
    ∵AB=AC=CE,
    ∴∠CAE=∠E,
    ∵四边形ABCE是平行四边形,
    ∴BC∥AE,∠ABC=∠E,
    ∴∠ADC=∠ABC=∠E,
    ∴△ACE∽△DAE,,
    ∵AE=12,CD=10,
    ∴AE2=DE•CE,
    144=(10+CE)CE,
    解得:CE=8或-18(舍),
    ∴AC=CE=8,
    ∴Rt△AGC中,AG==2,
    设⊙O的半径为r,
    由勾股定理得:r2=62+(r-2)2,
    r=,
    则⊙O的半径是.
    【点睛】
    此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.
    21、(1)4,5;(2)①7;②4或 或或8.
    【解析】
    分别令可得b和m的值;
    根据的面积公式列等式可得t的值;
    存在,分三种情况:
    当时,如图1,当时,如图2,当时,如图3,分别求t的值即可.
    【详解】
    把点代入直线中得:,
    点,
    直线过点C,
    ,;
    由题意得:,
    中,当时,,


    中,当时,,



    的面积为10,


    则t的值7秒;
    存在,分三种情况:
    当时,如图1,过C作于E,



    即;
    当时,如图2,




    当时,如图3,






    ,即;
    综上,当秒或秒或秒或8秒时,为等腰三角形.
    【点睛】
    本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.
    22、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
    【解析】
    (1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
    【详解】
    (1)如图,过点P作PE⊥MN,垂足为E,
    由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
    ∵PE=30海里,∴AP=60海里,
    ∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
    ∴PE=EB=30海里,
    在Rt△PEB中,BP==30≈42海里,
    故AP=60海里,BP=42(海里);

    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
    根据题意,得,
    解得x=20,
    经检验,x=20是原方程的解,
    甲船的速度为1.2x=1.2×20=24(海里/时).,
    答:甲船的速度是24海里/时,乙船的速度是20海里/时.
    【点睛】
    本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
    23、(1);(2)原分式方程中“?”代表的数是-1.
    【解析】
    (1)“?”当成5,解分式方程即可,
    (2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.
    【详解】
    (1)方程两边同时乘以得

    解得
    经检验,是原分式方程的解.
    (2)设?为,
    方程两边同时乘以得

    由于是原分式方程的增根,
    所以把代入上面的等式得


    所以,原分式方程中“?”代表的数是-1.
    【点睛】
    本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程;  ②把增根代入整式方程即可求得相关字母的值.
    24、﹣1.
    【解析】
    本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    原式
    =1﹣3+4﹣3,
    =﹣1.
    【点睛】
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.

    相关试卷

    北京市西城区(南区)2021-2022学年十校联考最后数学试题含解析: 这是一份北京市西城区(南区)2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了如图,双曲线y=等内容,欢迎下载使用。

    2022年鲍沟中学十校联考最后数学试题含解析: 这是一份2022年鲍沟中学十校联考最后数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算,结果正确的是,若分式方程无解,则a的值为等内容,欢迎下载使用。

    2022届重庆合川区南屏中学十校联考最后数学试题含解析: 这是一份2022届重庆合川区南屏中学十校联考最后数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,如图,立体图形的俯视图是,估计的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map