2022年浙江省温州市八校中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )
A. B.
C. D.
2.二次函数y=3(x﹣1)2+2,下列说法正确的是( )
A.图象的开口向下
B.图象的顶点坐标是(1,2)
C.当x>1时,y随x的增大而减小
D.图象与y轴的交点坐标为(0,2)
3.如图是二次函数的部分图象,由图象可知不等式的解集是( )
A. B. C.且 D.x<-1或x>5
4.浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )
A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×106
5.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是( )
A.(1,1) B.(,) C.(1,3) D.(1,)
6.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
A. B. C. D.
7.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )
A.2πcm B.4πcm C.6πcm D.8πcm
8.如图,在已知的△ ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是( )
A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB
9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )
A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
10.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于( )
A.2cm B.3cm C.6cm D.7cm
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.
12.若,,则代数式的值为__________.
13.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.
14.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
15.使得分式值为零的x的值是_________;
16.方程的根为_____.
17.因式分解:y3﹣16y=_____.
三、解答题(共7小题,满分69分)
18.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
19.(5分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.
(1)写出抛物线的函数表达式;
(2)判断△ABC的形状,并证明你的结论;
(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.
20.(8分)先化简,再求值:÷,其中m是方程x2+2x-3=0的根.
21.(10分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)
22.(10分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.
(1)求;(直接写出结果)
(2)当AB=3,AC=5时,求的周长.
23.(12分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
24.(14分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
【详解】
左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
故选B.
【点睛】
本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
2、B
【解析】
由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.
【详解】
解:A、因为a=3>0,所以开口向上,错误;
B、顶点坐标是(1,2),正确;
C、当x>1时,y随x增大而增大,错误;
D、图象与y轴的交点坐标为(0,5),错误;
故选:B.
【点睛】
考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).
3、D
【解析】
利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
∴图象与x轴的另一个交点坐标为(-1,0).
由图象可知:的解集即是y<0的解集,
∴x<-1或x>1.故选D.
4、B
【解析】
.
故选B.
点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
5、B
【解析】
根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.
【详解】
A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,
B选项(,) 到坐标原点的距离为=2,因此点在圆上,
C选项 (1,3) 到坐标原点的距离为>2,因此点在圆外
D选项(1,) 到坐标原点的距离为<2,因此点在圆内,
故选B.
【点睛】
本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.
6、A
【解析】
解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
7、B
【解析】
首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.
【详解】
解:如图,连接OC,AO,
∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的长= =4π,
故选B.
【点睛】
本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.
8、B
【解析】
作弧后可知MN⊥CB,且CD=DB.
【详解】
由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.
【点睛】
了解中垂线的作图规则是解题的关键.
9、C
【解析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
∴a+b<1,ab<1,a﹣b<1,a÷b<1.
故选:C.
10、D
【解析】
【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.
【详解】因为,AB=10cm,BC=4cm,
所以,AC=AB-BC=10-4=6(cm)
因为,点D是线段AC的中点,
所以,CD=3cm,
所以,BD=BC+CD=3+4=7(cm)
故选D
【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.
二、填空题(共7小题,每小题3分,满分21分)
11、80°.
【解析】
如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.
【详解】
如图,
∵m∥n,
∴∠1=∠3,
∵∠1=100°,
∴∠3=100°,
∴∠2=180°﹣100°=80°,
故答案为80°.
【点睛】
本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.
12、-12
【解析】
分析:对所求代数式进行因式分解,把,,代入即可求解.
详解:,,
,
故答案为:
点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.
13、
【解析】
试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:
根据勾股定理得:,
由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,
∴×5BD=4,解得:BD=.
考点:1.网格型问题;2.勾股定理;3.三角形的面积.
14、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
15、2
【解析】
根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.
【详解】
解:要使分式有意义则 ,即
要使分式为零,则 ,即
综上可得
故答案为2
【点睛】
本题主要考查分式的性质,关键在于分式的分母不能为0.
16、﹣2或﹣7
【解析】
把无理方程转化为整式方程即可解决问题.
【详解】
两边平方得到:13+2=25,
∴=6,
∴(x+11)(2-x)=36,
解得x=-2或-7,
经检验x=-2或-7都是原方程的解.
故答案为-2或-7
【点睛】
本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.
17、y(y+4)(y﹣4)
【解析】
试题解析:原式
故答案为
点睛:提取公因式法和公式法相结合因式分解.
三、解答题(共7小题,满分69分)
18、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
【解析】
分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;
(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;
(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.
详解:(1)56÷28%=200,
即本次一共调查了200名购买者;
(2)D方式支付的有:200×20%=40(人),
A方式支付的有:200-56-44-40=60(人),
补全的条形统计图如图所示,
在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,
(3)1600×=928(名),
答:使用A和B两种支付方式的购买者共有928名.
点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
19、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
【解析】
(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;
(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8 ,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;
(3)利用勾股定理计算出AC=10 ,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2 ,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.
【详解】
解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),
把A(8,9),B(0,1)代入y=x2+bx+c得,
解得,
∴抛物线解析式为y=x2﹣7x+1;
故答案为y=x2﹣7x+1;
(2)△ABC为直角三角形.理由如下:
当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),
作AM⊥y轴于M,CN⊥y轴于N,如图,
∵B(0,1),A(8,9),C(1,﹣5),
∴BM=AM=8,BN=CN=1,
∴△ABM和△BNC都是等腰直角三角形,
∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,
∴∠ABC=90°,
∴△ABC为直角三角形;
(3)∵AB=8,BN=1,
∴AC=10,
∴Rt△ABC的内切圆的半径=,
设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,
∵I为△ABC的内心,
∴AI、BI为角平分线,
∴BI⊥y轴,
而AI⊥PQ,
∴PQ为△ABC的外角平分线,
易得y轴为△ABC的外角平分线,
∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,
它们到直线AB、BC、AC距离相等,
BI=×2=4,
而BI⊥y轴,
∴I(4,1),
设直线AI的解析式为y=kx+n,
则,
解得,
∴直线AI的解析式为y=2x﹣7,
当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);
设直线AP的解析式为y=﹣x+p,
把A(8,9)代入得﹣4+n=9,解得n=13,
∴直线AP的解析式为y=﹣x+13,
当y=1时,﹣x+13=1,则P(24,1)
当x=0时,y=﹣x+13=13,则Q(0,13),
综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.
20、原式=,当m=l时,原式=
【解析】
先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.
解:原式=
∵x2+2x-3=0, ∴x1=-3,x2 =1
∵‘m是方程x2 +2x-3=0的根, ∴m=-3或m=1
∵m+3≠0, ∴.m≠-3, ∴m=1
当m=l时,原式:
“点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入.
21、5.5米
【解析】
过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
在Rt△ACD中,∠CAD=30°,则AD=CD=x.
在Rt△BCD中,∠CBD=45°,则BD=CD=x.
由题意得,x﹣x=4,
解得:.
答:生命所在点C的深度为5.5米.
22、(1)∠ADE=90°;
(2)△ABE的周长=1.
【解析】
试题分析:(1)是线段垂直平分线的做法,可得∠ADE=90°
(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以△ABE的周长为AB+BE+AE=AB+BC=1
试题解析:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;
(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,
∵MN是线段AC的垂直平分线,∴AE=CE,
∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=1.
考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长
23、-17.1
【解析】
按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
【详解】
解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
=﹣8﹣14﹣9÷(﹣2),
=﹣62+4.1,
=﹣17.1.
【点睛】
此题要注意正确掌握运算顺序以及符号的处理.
24、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.
【解析】
(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;
(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;
(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.
【详解】
(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.
由题意得:3200﹣5(x﹣10)=2800,解得:x=1.
答:商家一次购买这种产品1件时,销售单价恰好为2800元;
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:
当0≤x≤10时,y=(3200﹣2500)x=700x,
当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,
当x>1时,y=(2800﹣2500)•x=300x;
(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,
函数y=700x,y=300x均是y随x增大而增大,
而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.
由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,
最低价为3200﹣5•(75﹣10)=2875元,
答:公司应将最低销售单价调整为2875元.
【点睛】
本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
2024年浙江省温州市瓯海区中考数学模拟试卷(含解析): 这是一份2024年浙江省温州市瓯海区中考数学模拟试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023届浙江省温州市各校中考数学模拟精编试卷含解析: 这是一份2023届浙江省温州市各校中考数学模拟精编试卷含解析,共16页。
2023年浙江省温州市中考数学模拟试卷(含解析): 这是一份2023年浙江省温州市中考数学模拟试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。