安徽省六安市霍邱县2022年初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
A.线段 B.等边三角形 C.正方形 D.平行四边形
2.下列成语描述的事件为随机事件的是( )
A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
3.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A. B.
C. D.
4.△ABC在正方形网格中的位置如图所示,则cosB的值为( )
A. B. C. D.2
5.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
A. B. C. D.12
6.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )
A. B.
C. D.
7.用配方法解方程时,可将方程变形为( )
A. B. C. D.
8.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.6 B.6 C.3 D.3
9.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )
A.平均数 B.中位数 C.众数 D.方差
10.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:
①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是( )
A.1 B.2 C.3 D.4
二、填空题(共7小题,每小题3分,满分21分)
11.一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_____.
12.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.
13.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
14.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.
15.已知反比例函数的图像经过点(-2017,2018),当时,函数值y随自变量x的值增大而_________.(填“增大”或“减小”)
16.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则an=__________(用含n的代数式表示).
所剪次数
1
2
3
4
…
n
正三角形个数
4
7
10
13
…
an
17.阅读下面材料:
在数学课上,老师提出如下问题:
小亮的作法如下:
老师说:“小亮的作法正确”
请回答:小亮的作图依据是______.
三、解答题(共7小题,满分69分)
18.(10分)已知关于x的方程x1+(1k﹣1)x+k1﹣1=0有两个实数根x1,x1.求实数k的取值范围; 若x1,x1满足x11+x11=16+x1x1,求实数k的值.
19.(5分)解不等式组并写出它的所有整数解.
20.(8分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)
21.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=,求DG的长,
22.(10分)先化简,再在1,2,3中选取一个适当的数代入求值.
23.(12分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.
24.(14分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).
(1)求抛物线的解析式及其顶点D的坐标;
(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;
(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2、B
【解析】试题解析:水涨船高是必然事件,A不正确;
守株待兔是随机事件,B正确;
水中捞月是不可能事件,C不正确
缘木求鱼是不可能事件,D不正确;
故选B.
考点:随机事件.
3、C
【解析】
根据全等三角形的判定定理进行判断.
【详解】
解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
C、
如图1,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
所以不能判定两个小三角形全等,故本选项符合题意;
D、
如图2,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
∵BD=EC=2,∠B=∠C,
∴△BDE≌△CEF,
所以能判定两个小三角形全等,故本选项不符合题意;
由于本题选择可能得不到全等三角形纸片的图形,
故选C.
【点睛】
本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
4、A
【解析】
解:在直角△ABD中,BD=2,AD=4,则AB=,
则cosB=.
故选A.
5、C
【解析】
设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
【详解】
∵四边形OCBA是矩形,
∴AB=OC,OA=BC,
设B点的坐标为(a,b),
∵BD=3AD,
∴D(,b),
∵点D,E在反比例函数的图象上,
∴=k,
∴E(a, ),
∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
∴k=,
故选:C
【点睛】
考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
6、C
【解析】
试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.
考点:二次函数图象与几何变换.
7、D
【解析】
配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.
【详解】
解:
故选D.
【点睛】
本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.
8、A
【解析】
试题分析:根据垂径定理先求BC一半的长,再求BC的长.
解:如图所示,设OA与BC相交于D点.
∵AB=OA=OB=6,
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD=
所以BC=2BD=.
故选A.
点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
9、D
【解析】
根据方差反映数据的波动情况即可解答.
【详解】
由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
故选D.
【点睛】
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
10、D
【解析】
如图连接OB、OD;
∵AB=CD,
∴=,故①正确
∵OM⊥AB,ON⊥CD,
∴AM=MB,CN=ND,
∴BM=DN,
∵OB=OD,
∴Rt△OMB≌Rt△OND,
∴OM=ON,故②正确,
∵OP=OP,
∴Rt△OPM≌Rt△OPN,
∴PM=PN,∠OPB=∠OPD,故④正确,
∵AM=CN,
∴PA=PC,故③正确,
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、60°或120°
【解析】
首先根据题意画出图形,过点O作OD⊥AB于点D, 通过垂径定理, 即可推出∠AOD的度数, 求得∠AOB的度数, 然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.
【详解】
解:如图:
连接OA,过点O作OD⊥AB 于点D,
OA=2,AB=,AD=BD=,
AD:OA=:2,
∠AOD=,∠ AOB=,
∠AMB=,∠ANB=.
故答案为: 或.
【点睛】
本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.
12、或10
【解析】
试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.
13、17
【解析】
先利用完全平方公式展开,然后再求和.
【详解】
根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9, x2+y2-2xy=9,所以x2+y2=17.
【点睛】
(1)完全平方公式:.
(2)平方差公式:(a+b)(a-b)=.
(3)常用等价变形:
,
,
.
14、
【解析】
根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.
【详解】
∵sinD=
∴
∴AD=11
∵四边形ABCD是菱形
∴AD=CD=11
∴菱形ABCD的面积=11×8=96cm1.
故答案为:96cm1.
【点睛】
本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.
15、增大
【解析】
根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性.
【详解】
∵反比例函数的图像经过点(-2017,2018),
∴k=-2017×2018<0,
∴当x>0时,y随x的增大而增大.
故答案为增大.
16、3n+1.
【解析】
试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.
试题解析:故剪n次时,共有4+3(n-1)=3n+1.
考点:规律型:图形的变化类.
17、两点确定一条直线;同圆或等圆中半径相等
【解析】
根据尺规作图的方法,两点之间确定一条直线的原理即可解题.
【详解】
解:∵两点之间确定一条直线,CD和AB都是圆的半径,
∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.
【点睛】
本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.
三、解答题(共7小题,满分69分)
18、 (2) k≤;(2)-2.
【解析】
试题分析:(2)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x2+x2=2﹣2k、x2x2=k2﹣2,将其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.
试题解析:(2)∵关于x的方程x2+(2k﹣2)x+k2﹣2=0有两个实数根x2,x2,
∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,
∴实数k的取值范围为k≤.
(2)∵关于x的方程x2+(2k﹣2)x+k2﹣2=0有两个实数根x2,x2,
∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,
∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,
解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.
考点:一元二次方程根与系数的关系,根的判别式.
19、不等式组的整数解有﹣1、0、1.
【解析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.
【详解】
,
解不等式①可得,x>-2;
解不等式②可得,x≤1;
∴不等式组的解集为:﹣2<x≤1,
∴不等式组的整数解有﹣1、0、1.
【点睛】
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.
20、塔CD的高度为37.9米
【解析】
试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.
试题解析:作BE⊥CD于E.
可得Rt△BED和矩形ACEB.
则有CE=AB=16,AC=BE.
在Rt△BED中,∠DBE=45°,DE=BE=AC.
在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.
∵16+DE=DC,
∴16+AC=AC,
解得:AC=8+8=DE.
所以塔CD的高度为(8+24)米≈37.9米,
答:塔CD的高度为37.9米.
21、 (1)证明见解析;(2)AD=;(3)DG=.
【解析】
(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
【详解】
(1)如图,连接OD,
∵AD为∠BAC的角平分线,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∴BC为圆O的切线;
(2)连接DF,由(1)知BC为圆O的切线,
∴∠FDC=∠DAF,
∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,
∴,即AD2=AB•AF=xy,
则AD= ;
(3)连接EF,在Rt△BOD中,sinB=,
设圆的半径为r,可得,
解得:r=5,
∴AE=10,AB=18,
∵AE是直径,
∴∠AFE=∠C=90°,
∴EF∥BC,
∴∠AEF=∠B,
∴sin∠AEF=,
∴AF=AE•sin∠AEF=10×=,
∵AF∥OD,
∴,即DG=AD,
∴AD=,
则DG=.
【点睛】
圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
22、,当x=2时,原式=.
【解析】
试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.
试题解析:
原式===
当x=2时,原式=.
23、证明见解析.
【解析】
试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.
考点:平行四边形的判定与性质.
24、 (1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.
【解析】
分析:
(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;
(2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;
(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.
详解:
(1)∵抛物线y=ax2+2x+1经过点B(4,0),
∴16a+1+1=0,
∴a=﹣1,
∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,
∴D(1,9);
(2)∵当x=0时,y=1,
∴C(0,1).
设直线CD的解析式为y=kx+b.
将点C、D的坐标代入得:,解得:k=1,b=1,
∴直线CD的解析式为y=x+1.
当y=0时,x+1=0,解得:x=﹣1,
∴直线CD与x轴的交点坐标为(﹣1,0).
∵当P在直线CD上时,|PC﹣PD|取得最大值,
∴p=﹣1;
(3)存在,
理由:如图,由(2)知,C(0,1),
∵B(4,0),
∴直线BC的解析式为y=﹣2x+1,
过点Q作QE∥y轴交BC于E,
设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),
∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,
∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,
∴m=2时,S△QBC最大,此时点Q的坐标为:(2,1).
点睛:(1)解第2小题时,知道当点P在直线CD上时,|PC﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,﹣m2+2m+1)(0<m<4),并结合点B、C的坐标把△BCQ的面积用含m的代数式表达出来.
安徽省蒙城重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份安徽省蒙城重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,下列说法中不正确的是,某班7名女生的体重等内容,欢迎下载使用。
2022年安徽省合肥市42中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年安徽省合肥市42中学初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了a、b是实数,点A等内容,欢迎下载使用。
2022届安徽省六安市皋城中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届安徽省六安市皋城中学初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了计算的结果是,如图,已知点A等内容,欢迎下载使用。