安徽省和县联考2022年中考试题猜想数学试卷含解析
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
A.关于x轴对称B.关于y轴对称
C.绕原点逆时针旋转D.绕原点顺时针旋转
2.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )
A.B.C.D.
3.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )
A.B.15C.D.9
4.关于2、6、1、10、6的这组数据,下列说法正确的是( )
A.这组数据的众数是6B.这组数据的中位数是1
C.这组数据的平均数是6D.这组数据的方差是10
5.如果a﹣b=5,那么代数式(﹣2)•的值是( )
A.﹣B.C.﹣5D.5
6.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为( )
A.x>2B.0<x<4
C.﹣1<x<4D.x<﹣1 或 x>4
7.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )
A.摸出的是3个白球B.摸出的是3个黑球
C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球
8.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是( )
A.a>bB.a<b
C.a=bD.与m的值有关
9.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为( )
A.0.135×106B.1.35×105C.13.5×104D.135×103
10.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于( )
A.3.5B.4C.7D.14
二、填空题(本大题共6个小题,每小题3分,共18分)
11.解不等式组,则该不等式组的最大整数解是_____.
12.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.
13.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.
14.如图,△ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G.若AD=DF=FB,则四边形DFGE的面积为_____.
15.因式分解:=_______________.
16.已知关于x的方程有解,则k的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)解方程:(x﹣3)(x﹣2)﹣4=1.
18.(8分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.
(1)求证:OE=OF;
(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.
19.(8分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
20.(8分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时?
21.(8分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?
22.(10分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.
请你根据图中信息解答下列问题:
(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°;
(2)补全条形统计图;
(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.
23.(12分)先化简:,再请你选择一个合适的数作为x的值代入求值.
24. ( 1)计算: ﹣4sin31°+(2115﹣π)1﹣(﹣3)2
(2)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
分析:根据旋转的定义得到即可.
详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
所以点A绕原点逆时针旋转90°得到点B,
故选C.
点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
2、A
【解析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:.
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
3、C
【解析】
由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.
【详解】
由折叠得到EB=EF,∠B=∠DFE,
在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,
根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,
解得:x=5,
∴EF=EB=5,CE=4,
∵FD∥BC,
∴∠DFE=∠FEC,
∴∠FEC=∠B,
∴EF∥AB,
∴,
则AB===,
故选C.
【点睛】
此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.
4、A
【解析】
根据方差、算术平均数、中位数、众数的概念进行分析.
【详解】
数据由小到大排列为1,2,6,6,10,
它的平均数为(1+2+6+6+10)=5,
数据的中位数为6,众数为6,
数据的方差= [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.
故选A.
考点:方差;算术平均数;中位数;众数.
5、D
【解析】
【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.
【详解】(﹣2)•
=
=
=a-b,
当a-b=5时,原式=5,
故选D.
6、C
【解析】
看两函数交点坐标之间的图象所对应的自变量的取值即可.
【详解】
∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
故选C.
【点睛】
本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7、A
【解析】
由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.
8、A
【解析】
【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.
【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,
所以,y随x的增大而减小.
因为,1<4,
所以,a>b.
故选A
【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.
9、B
【解析】
根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).
【详解】
解:135000用科学记数法表示为:1.35×1.
故选B.
【点睛】
科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、A
【解析】
根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.
【详解】
∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.
∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.
故选A.
【点睛】
本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x=1.
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
【详解】
,
由不等式①得x≤1,
由不等式②得x>-1,
其解集是-1<x≤1,
所以整数解为0,1,2,1,
则该不等式组的最大整数解是x=1.
故答案为:x=1.
【点睛】
考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
12、
【解析】
根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.
【详解】
根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.
故其概率为:.
【点睛】
本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.
13、
【解析】
用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.
【详解】
解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,
画树状图:
共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,
所以抽到卡片上印有图案都是轴对称图形的概率.
故答案为.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.
14、1.
【解析】
先根据题意可证得△ABC∽△ADE,△ABC∽△AFG,再根据△ABC的面积为6分别求出△ADE与△AFG的面积,则四边形DFGE的面积=S△AFG-S△ADE.
【详解】
解:∵DE∥BC,,
∴△ADE∽△ABC,
∵AD=DF=FB,
∴=()1,即=()1,∴S△ADE=;
∵FG∥BC,∴△AFG∽△ABC,
=()1,即=()1,∴S△AFG=;
∴S四边形DFGE= S△AFG- S△ADE=-=1.故答案为:1.
【点睛】
本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.
15、a(a+b)(a-b).
【解析】
分析:本题考查的是提公因式法和利用平方差公式分解因式.
解析:原式= a(a+b)(a-b).
故答案为a(a+b)(a-b).
16、k≠1
【解析】
试题分析:因为,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以,因为原方程有解,所以,解得.
考点:分式方程.
三、解答题(共8题,共72分)
17、x1=,x2=
【解析】
试题分析:方程整理为一般形式,找出a,b,c的值,代入求根公式即可求出解.
试题解析:解:方程化为,,,.
>1.
.
即,.
18、(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.
【解析】
(1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;
(2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AB∥CD,OB=OD,
∴∠OAE=∠OCF,
在△OAE和△OCF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF;
(2)∵OE=OF,OB=OD,
∴四边形DEBF是平行四边形,
∵DE⊥AB,
∴∠DEB=90°,
∴四边形DEBF是矩形,
∴BD=EF,
∴OD=OB=OE=OF=BD,
∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE.
【点睛】
本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.
19、(1)10;(2)0.9;(3)44%
【解析】
(1)把条形统计图中每天的访问量人数相加即可得出答案;
(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
(3)根据增长率的算数列出算式,再进行计算即可.
【详解】
(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
故答案为10;
(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
∴星期日学生日访问总量为:3×30%=0.9(万人次);
故答案为0.9;
(3)周六到周日学生访问该网站的日平均增长率为:=44%;
故答案为44%.
考点:折线统计图;条形统计图
20、(1)y1=4x,y2=-5x+1.(2)km.(3)h.
【解析】
(1)由图象直接写出函数关系式;
(2)若相遇,甲乙走的总路程之和等于两地的距离.
【详解】
(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,
乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.
(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,
设甲、乙两班学生出发后,x小时相遇,则
4x+5x=1,
解得x=.
当x=时,y2=−5×+1=,
∴相遇时乙班离A地为km.
(3)甲、乙两班首次相距4千米,
即两班走的路程之和为6km,
故4x+5x=6,
解得x=h.
∴甲、乙两班首次相距4千米时所用时间是h.
21、购买了桂花树苗1棵
【解析】
分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案.
详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1), 解得x=1.
答:购买了桂花树苗1棵.
点睛:本题主要考查的是一元一次方程的应用,属于基础题型.解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系.
22、(1)126;(2)作图见解析(3)768
【解析】
试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360°即可;
(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人 ;
(3)用部分估计整体.
试题解析:(1)126°
(2)40÷40%-2-16-18-32=32人
(3)1200×=768人
考点:统计图
23、x﹣1,1.
【解析】
先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可.
【详解】
解:原式==x﹣1,
根据分式的意义可知,x≠0,且x≠±1,
当x=2时,原式=2﹣1=1.
【点睛】
本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零.
24、 (1)-7;(2) ,.
【解析】
(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;
(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.
【详解】
(1)原式=3−4×+1−9=−7;
(2)原式=1− =1− = =−;
∵|x−2|+(2x−y−3)2=1,
∴,
解得:x=2,y=1,
当x=2,y=1时,原式=−.
故答案为(1)-7;(2)−;−.
【点睛】
本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.
云南省双柏县联考2022年中考试题猜想数学试卷含解析: 这是一份云南省双柏县联考2022年中考试题猜想数学试卷含解析,共21页。试卷主要包含了我们知道等内容,欢迎下载使用。
山东阳谷县联考2021-2022学年中考试题猜想数学试卷含解析: 这是一份山东阳谷县联考2021-2022学年中考试题猜想数学试卷含解析,共29页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
山东省济宁嘉祥县联考2022年中考试题猜想数学试卷含解析: 这是一份山东省济宁嘉祥县联考2022年中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,一元一次不等式2等内容,欢迎下载使用。