


安徽省安庆市桐城二中重点名校2022年中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( )
A.12 B.16 C.18 D.24
2.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )
A.335°° B.255° C.155° D.150°
3.已知关于的方程,下列说法正确的是
A.当时,方程无解
B.当时,方程有一个实数解
C.当时,方程有两个相等的实数解
D.当时,方程总有两个不相等的实数解
4.若代数式有意义,则实数x的取值范围是( )
A.x=0 B.x=3 C.x≠0 D.x≠3
5.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )
A.2个 B.3个 C.4个 D.5个
6.如图所示的工件,其俯视图是( )
A. B. C. D.
7.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )
A.12.5° B.15° C.20° D.22.5°
8.若关于的方程的两根互为倒数,则的值为( )
A. B.1 C.-1 D.0
9.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )
A. B.
C. D.
10.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )
A.32° B.30° C.38° D.58°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.
12.若一个多边形的内角和是900º,则这个多边形是 边形.
13.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.
14.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.
15.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.
16.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.
三、解答题(共8题,共72分)
17.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.
(1)求证:AB为⊙C的切线.
(2)求图中阴影部分的面积.
18.(8分)解不等式组,并写出其所有的整数解.
19.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
20.(8分)解不等式组:
21.(8分)计算:()﹣2﹣+(﹣2)0+|2﹣|
22.(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.
23.(12分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.
24.如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
解:∵四边形ABCD为矩形,
∴AD=BC=10,AB=CD=8,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=10,EF=DE,
在Rt△ABF中,
∵BF==6,
∴CF=BC-BF=10-6=4,
∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.
故选A.
2、B
【解析】
∵∠A+∠B+∠C=180°,∠A=75°,
∴∠B+∠C=180°﹣∠A=105°.
∵∠1+∠2+∠B+∠C=360°,
∴∠1+∠2=360°﹣105°=255°.
故选B.
点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.
3、C
【解析】
当时,方程为一元一次方程有唯一解.
当时,方程为一元二次方程,的情况由根的判别式确定:
∵,
∴当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解.综上所述,说法C正确.故选C.
4、D
【解析】
分析:根据分式有意义的条件进行求解即可.
详解:由题意得,x﹣3≠0,
解得,x≠3,
故选D.
点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.
5、B
【解析】
根据二次函数的图象与性质判断即可.
【详解】
①由抛物线开口向上知: a>1; 抛物线与y轴的负半轴相交知c<1; 对称轴在y轴的右侧知:b>1;所以:abc<1,故①错误;
②对称轴为直线x=-1,,即b=2a,
所以b-2a=1.故②错误;
③由抛物线的性质可知,当x=-1时,y有最小值,
即a-b+c<(),
即a﹣b<m(am+b)(m≠﹣1),
故③正确;
④因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;
⑤由图像可得,当x=2时,y>1,
即: 4a+2b+c>1,
故⑤正确.
故正确选项有③④⑤,
故选B.
【点睛】
本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.
6、B
【解析】
试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,
故选B.
点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.
7、B
【解析】
解:连接OB,
∵四边形ABCO是平行四边形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB为等边三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圆周角定理得∠BAF=∠BOF=15°
故选:B
8、C
【解析】
根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值.
【详解】
解:设、是的两根,
由题意得:,
由根与系数的关系得:,
∴k2=1,
解得k=1或−1,
∵方程有两个实数根,
则,
当k=1时,,
∴k=1不合题意,故舍去,
当k=−1时,,符合题意,
∴k=−1,
故答案为:−1.
【点睛】
本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.
9、D
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项正确;
故选:D.
【点睛】
此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
10、A
【解析】
根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
【详解】
解:∵∠B=58°,
∴∠AOC=116°,
∵OA=OC,
∴∠C=∠OAC=32°,
故选:A.
【点睛】
此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、10,,.
【解析】
解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;
如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;
如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.
故答案为10,,.
12、七
【解析】
根据多边形的内角和公式,列式求解即可.
【详解】
设这个多边形是边形,根据题意得,
,
解得.
故答案为.
【点睛】
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
13、(1,)或(﹣1,)
【解析】
设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
【详解】
解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
∵⊙M的半径为1,
∴x=1或x=−1,
当x=1时,y=,
当x=−1时,y=.
∴P点坐标为:(1, )或(−1, ).
故答案为(1, )或(−1, ).
【点睛】
本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
14、2
【解析】
试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.
在直角△OCE中,
则AE=OA−OE=5−3=2.
故答案为2.
15、
【解析】
在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.
【详解】
∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,
∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.
故答案为.
16、(15﹣5)
【解析】
先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.
【详解】
∵P为AB的黄金分割点(AP>PB),
∴AP=AB=×10=5﹣5,
∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.
故答案为(15﹣5).
【点睛】
本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.
三、解答题(共8题,共72分)
17、 (1)证明见解析;(2)1-π.
【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
【详解】
(1)过C作CF⊥AB于F.
∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
∵CF⊥AB,∴AB为⊙C的切线;
(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
【点睛】
本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
18、不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.
【解析】
先求出不等式组的解集,即可求得该不等式组的整数解.
【详解】
由①得,x≥1,
由②得,x<2.
所以不等式组的解集为1≤x<2,
该不等式组的整数解为1,2,1.
【点睛】
本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
19、(1);(2);(3)第一题.
【解析】
(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;
(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;
(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.
【详解】
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;
故答案为;
(2)画树状图为:
共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;
(3)建议小明在第一题使用“求助”.理由如下:
小明将“求助”留在第一题,
画树状图为:
小明将“求助”留在第一题使用,小明顺利通关的概率=,
因为>,
所以建议小明在第一题使用“求助”.
【点睛】
本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.
20、﹣9<x<1.
【解析】
先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.
【详解】
解不等式1(x﹣1)<2x,得:x<1,
解不等式﹣<1,得:x>﹣9,
则原不等式组的解集为﹣9<x<1.
【点睛】
此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.
21、2
【解析】
直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.
【详解】
解:原式=4﹣3+1+2﹣2=2.
【点睛】
本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.
22、,2
【解析】
试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.
试题解析:原式=·=
当a=0时,原式==2.
考点:分式的化简求值.
23、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.
【解析】
试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;
(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.
(1)把x=-1代入得1+m-2=1,解得m=1
∴2--2=1.
∴
∴另一根是2;
(2)∵,
∴方程①有两个不相等的实数根.
考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程
点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根
24、(1)y=x2+2x﹣3;(2);(3)详见解析.
【解析】
试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
∴B(-3,0),
设抛物线的表达式为y=a(x+3)(x-1),
将点D(-4,5)代入,得5a=5,解得a=1,
∴抛物线的表达式为y=x2+2x-3;
(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m-3),则F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4.
∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
∴△ACE的面积的最大值为;
(3)当AD为平行四边形的对角线时:
设点M的坐标为(-1,a),点N的坐标为(x,y).
∴平行四边形的对角线互相平分,
∴=,=,
解得x=-2,y=5-a,
将点N的坐标代入抛物线的表达式,得5-a=-3,
解得a=8,
∴点M的坐标为(-1,8),
当AD为平行四边形的边时:
设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
∴M(-1,16),
将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
∴M(-1,26),
综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
2024年安徽省安庆市桐城市第二中学中考三模数学试题(学生版+教师版): 这是一份2024年安徽省安庆市桐城市第二中学中考三模数学试题(学生版+教师版),文件包含2024年安徽省安庆市桐城市第二中学中考三模数学试题教师版docx、2024年安徽省安庆市桐城市第二中学中考三模数学试题学生版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
安徽省桐城市重点中学2021-2022学年中考数学模试卷含解析: 这是一份安徽省桐城市重点中学2021-2022学年中考数学模试卷含解析,共17页。试卷主要包含了运用图形变化的方法研究下列问题,方程的解是.等内容,欢迎下载使用。
安徽省安庆市重点名校2022年中考数学对点突破模拟试卷含解析: 这是一份安徽省安庆市重点名校2022年中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,计算﹣8+3的结果是等内容,欢迎下载使用。