|试卷下载
搜索
    上传资料 赚现金
    2022年四川省成都市东辰国际校中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2022年四川省成都市东辰国际校中考数学对点突破模拟试卷含解析01
    2022年四川省成都市东辰国际校中考数学对点突破模拟试卷含解析02
    2022年四川省成都市东辰国际校中考数学对点突破模拟试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省成都市东辰国际校中考数学对点突破模拟试卷含解析

    展开
    这是一份2022年四川省成都市东辰国际校中考数学对点突破模拟试卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,如图,AB∥CD,那么,|﹣3|的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为(   )

    A.12cm B.20cm C.24cm D.28cm
    2.下列计算结果等于0的是( )
    A. B. C. D.
    3.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )

    A.3cm B.4cm C.5cm D.6cm
    4.如图,AB∥CD,那么(  )

    A.∠BAD与∠B互补 B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补
    5.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是(  )

    A. B.
    C. D.
    6.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
    A.-6 B.-5 C.-6或-5 D.6或5
    7.|﹣3|的值是( )
    A.3 B. C.﹣3 D.﹣
    8.下列二次根式中,最简二次根式的是(  )
    A. B. C. D.
    9.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )

    A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC
    10.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
    A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
    11.一个几何体的三视图如图所示,这个几何体是( )

    A.三菱柱 B.三棱锥 C.长方体 D.圆柱体
    12.下列四个图案中,不是轴对称图案的是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_________
    14.已知是方程组的解,则3a﹣b的算术平方根是_____.
    15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.

    16.若x=-1, 则x2+2x+1=__________.
    17.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.

    18.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.

    (1)求抛物线的解析式;
    (2)当0<t≤8时,求△APC面积的最大值;
    (3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
    20.(6分)解不等式组并写出它的整数解.
    21.(6分)解方程:
    22.(8分)如图,在等边中,,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm.
    小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
    下面是小聪的探究过程,请补充完整:
    通过取点、画图、测量,得到了x与y的几组值,如下表:

    0

    1

    2

    3

    4

    5




    ___

    0




    0
    说明:补全表格上相关数值保留一位小数
    建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.

    23.(8分)已知:如图,在菱形中,点,,分别为,,的中点,连接,,,.

    求证:;
    当与满足什么关系时,四边形是正方形?请说明理由.
    24.(10分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.
    (1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?
    (2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
    25.(10分)已知抛物线y=ax2+bx+c.
    (Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
    ①求该抛物线的解析式;
    ②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
    设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
    (Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
    26.(12分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).
    (1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;
    (2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.
    27.(12分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.

    (1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;
    (2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
    (3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径.
    【详解】
    设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:
    2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm.
    故选C.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    2、A
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    解:A、原式=0,符合题意;
    B、原式=-1+(-1)=-2,不符合题意;
    C、原式=-1,不符合题意;
    D、原式=-1,不符合题意,
    故选:A.
    【点睛】
    本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.
    3、A
    【解析】
    分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
    详解:设CN=xcm,则DN=(8﹣x)cm,
    由折叠的性质知EN=DN=(8﹣x)cm,
    而EC=BC=4cm,
    在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
    即(8﹣x)2=16+x2,
    整理得16x=48,
    所以x=1.
    故选:A.
    点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
    4、C
    【解析】
    分清截线和被截线,根据平行线的性质进行解答即可.
    【详解】
    解:∵AB∥CD,
    ∴∠BAD与∠D互补,即C选项符合题意;
    当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,
    故选项A、B、D都不合题意,
    故选:C.
    【点睛】
    本题考查了平行线的性质,熟记性质并准确识图是解题的关键.
    5、B
    【解析】
    根据题意找到从左面看得到的平面图形即可.
    【详解】
    这个立体图形的左视图是,
    故选:B.
    【点睛】
    本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.
    6、A
    【解析】
    试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
    ∴x1+x2=2,x1∙x2=-1
    ∴=.
    故选A.
    7、A
    【解析】
    分析:根据绝对值的定义回答即可.
    详解:负数的绝对值等于它的相反数,

    故选A.
    点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
    8、C
    【解析】
    判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    A、=,被开方数含分母,不是最简二次根式;故A选项错误;
    B、=,被开方数为小数,不是最简二次根式;故B选项错误;
    C、,是最简二次根式;故C选项正确;
    D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;
    故选C.
    考点:最简二次根式.
    9、D
    【解析】
    解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,
    ∴AE∥BC,故C选项正确,
    ∴∠EAC=∠C,故B选项正确,
    ∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,
    故选D.
    【点睛】
    本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.
    10、A
    【解析】
    试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
    解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
    故选A.
    考点:二次函数图象与几何变换.
    11、A
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.
    故选:B.
    【点睛】
    此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
    12、B
    【解析】
    根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    【详解】
    A、是轴对称图形,故本选项错误;
    B、不是轴对称图形,故本选项正确;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、18π
    【解析】解:设圆锥的半径为 ,母线长为 .则

    解得

    14、2.
    【解析】
    灵活运用方程的性质求解即可。
    【详解】
    解:由是方程组的解,可得满足方程组,
    由①+②的,3x-y=8,即可3a-b=8,
    故3a﹣b的算术平方根是,
    故答案:
    【点睛】
    本题主要考查二元一次方程组的性质及其解法。
    15、5或1.
    【解析】
    先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.
    【详解】
    ∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,
    ∴AB=5,
    ∵以AD为折痕△ABD折叠得到△AB′D,
    ∴BD=DB′,AB′=AB=5.
    如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.

    设BD=DB′=x,则AF=6+x,FB′=8-x.
    在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.
    解得:x1=5,x5=0(舍去).
    ∴BD=5.
    如图5所示:当∠B′ED=90°时,C与点E重合.

    ∵AB′=5,AC=6,
    ∴B′E=5.
    设BD=DB′=x,则CD=8-x.
    在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.
    解得:x=1.
    ∴BD=1.
    综上所述,BD的长为5或1.
    16、2
    【解析】
    先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
    【详解】
    ∵x=-1,
    ∴x2+2x+1=(x+1)2=(-1+1)2=2,
    故答案为:2.
    【点睛】
    本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
    17、1a1.
    【解析】
    结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积.
    【详解】
    阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积
    =(1a)1+a1-×1a×3a
    =4a1+a1-3a1
    =1a1.
    故答案为:1a1.
    【点睛】
    此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.
    18、
    【解析】
    根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.
    【详解】
    解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,

    ∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),

    如图2,∵△ABC,△DEF都为正三角形,
    ∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
    ∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
    在△AEF和△CFD中,

    ∴△AEF≌△CFD(AAS);
    同理可证:△AEF≌△CFD≌△BDE;
    ∴BE=AF,即AE+AF=AE+BE=a.
    设M是△AEF的内心,过点M作MH⊥AE于H,
    则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
    ∵MA平分∠BAC,
    ∴∠HAM=30°;
    ∴HM=AH•tan30°=(a-b)•=
    故答案为:.
    【点睛】
    本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2)12;(3)t=或t=或t=1.
    【解析】
    试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.
    试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,
    ∴x1+x2=8,
    由.
    解得:.
    ∴B(2,0)、C(6,0)
    则4m﹣16m+4m+2=0,
    解得:m=,
    ∴该抛物线解析式为:y=;.
    (2)可求得A(0,3)
    设直线AC的解析式为:y=kx+b,


    ∴直线AC的解析式为:y=﹣x+3,
    要构成△APC,显然t≠6,分两种情况讨论:
    当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),

    ∵P(t,),∴PF=,
    ∴S△APC=S△APF+S△CPF
    =
    =
    =,
    此时最大值为:,
    ②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),
    ∵P(t,),∴PM=,
    ∴S△APC=S△APF﹣S△CPF=
    =
    =,
    当t=8时,取最大值,最大值为:12,
    综上可知,当0<t≤8时,△APC面积的最大值为12;
    (3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,
    Q(t,3),P(t,),
    ①当2<t≤6时,AQ=t,PQ=,
    若:△AOB∽△AQP,则:,
    即:,
    ∴t=0(舍),或t=,
    若△AOB∽△PQA,则:,
    即:,
    ∴t=0(舍)或t=2(舍),
    ②当t>6时,AQ′=t,PQ′=,
    若:△AOB∽△AQP,则:,
    即:,
    ∴t=0(舍),或t=,
    若△AOB∽△PQA,则:,
    即:,
    ∴t=0(舍)或t=1,
    ∴t=或t=或t=1.

    考点:二次函数综合题.
    20、不等式组的解集是5<x≤1,整数解是6,1
    【解析】
    先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.
    【详解】

    ∵解①得:x>5,
    解不等式②得:x≤1,
    ∴不等式组的解集是5<x≤1,
    ∴不等式组的整数解是6,1.
    【点睛】
    本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法
    21、x=-4是方程的解
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】


    ∴x=-4,
    当x=-4时,
    ∴x=-4是方程的解
    【点睛】
    本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
    22、(1)1.1;(2)见解析;(3).
    【解析】
    (1)(2)需要认真按题目要求测量,描点作图;
    (3)线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.
    【详解】
    根据题意测量约
    故应填:
    根据题意画图:

    当线段BD是线段CE长的2倍时,得到图象,该图象与中图象的交点即为所求情况,测量得BD长约.
    故答案为(1)1.1;(2)见解析;(3)1.7.
    【点睛】
    本题考查函数作图和函数图象实际意义的理解,在中,考查学生由数量关系得到函数关系的转化思想.
    23、见解析
    【解析】
    (1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)证明△BCE≌△DCF即可;
    (2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.
    【详解】
    (1)证明:∵四边形ABCD是菱形,
    ∴∠B=∠D,AB=BC=DC=AD,
    ∵点E,O,F分别为AB,AC,AD的中点,
    ∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,
    在△BCE和△DCF中,,
    ∴△BCE≌△DCF(SAS);
    (2)当AB⊥BC时,四边形AEOF是正方形,理由如下:
    由(1)得:AE=OE=OF=AF,
    ∴四边形AEOF是菱形,
    ∵AB⊥BC,OE∥BC,
    ∴OE⊥AB,
    ∴∠AEO=90°,
    ∴四边形AEOF是正方形.
    【点睛】
    本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.
    24、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
    【解析】
    试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;
    (2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.
    试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,
    根据题意,2000x+2500(30-x)=68000,
    解得x=14,
    ∴30-x=16,
    答:种植A种生姜14亩,种植B种生姜16亩;
    (2)由题意得,x≥(30-x),解得x≥10,
    设全部收购该基地生姜的年总收入为y元,则
    y=8×2000x+7×2500(30-x)=-1500x+525000,
    ∵y随x的增大而减小,∴当x=10时,y有最大值,
    此时,30-x=20,y的最大值为510000元,
    答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
    【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.
    25、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
    【解析】
    (I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
    【详解】
    (I)①设抛物线的解析式为y=a(x+2)2﹣3,
    ∵抛物线经过点B(﹣3,0),
    ∴0=a(﹣3+2)2﹣3,
    解得:a=1,
    ∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
    ②设直线AB的解析式为y=kx+m(k≠0),
    将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
    得:,解得:,
    ∴直线AB的解析式为y=﹣2x﹣2.
    ∵直线l与AB平行,且过原点,
    ∴直线l的解析式为y=﹣2x.
    当点P在第二象限时,x<0,如图所示.
    S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
    ∴S=S△POB+S△AOB=﹣3x+2(x<0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围是≤x≤.
    当点P′在第四象限时,x>0,
    过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
    S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
    ∵S△ABE=×2×3=3,
    ∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围为≤x≤.
    综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
    (II)ac≤1,理由如下:
    ∵当x=c时,y=0,
    ∴ac2+bc+c=0,
    ∵c>1,
    ∴ac+b+1=0,b=﹣ac﹣1.
    由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
    把x=0代入y=ax2+bx+c,得y=c,
    ∴抛物线与y轴的交点为(0,c).
    ∵a>0,
    ∴抛物线开口向上.
    ∵当0<x<c时,y>0,
    ∴抛物线的对称轴x=﹣≥c,
    ∴b≤﹣2ac.
    ∵b=﹣ac﹣1,
    ∴﹣ac﹣1≤﹣2ac,
    ∴ac≤1.

    【点睛】
    本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
    26、(1)P(两个小孩都是女孩)=;(2)P(三个小孩中恰好是2女1男)=.
    【解析】
    (1)画出树状图即可解题,(2)画出树状图即可解题.
    【详解】
    (1)画树状图如下:

    由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,
    ∴P(两个小孩都是女孩)=.
    (2)画树状图如下:

    由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,
    ∴P(三个小孩中恰好是2女1男)=.
    【点睛】
    本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.
    27、(1)(2)(3) .
    【解析】
    (1)由勾股定理求出BP的长, D是边AB的中点,P为AC的中点,所以点E是△ABC的重心,然后求得BE的长.
    (2)过点B作BF∥CA交CD的延长线于点F,所以,然后可求得EF=8,所以,所以,因为PD⊥AB,D是边AB的中点,在△ABC中可求得cosA的值.
    (3)由,∠PBD=∠ABP,证得△PBD∽△ABP,再证明△DPE∽△DCP得到,PD可求.
    【详解】
    解:(1)∵P为AC的中点,AC=8,
    ∴CP=4,
    ∵∠ACB=90°,BC=6,
    ∴BP=,
    ∵D是边AB的中点,P为AC的中点,
    ∴点E是△ABC的重心,
    ∴,
    (2)过点B作BF∥CA交CD的延长线于点F,

    ∴,
    ∵BD=DA,
    ∴FD=DC,BF=AC,
    ∵CE=2,ED=3,则CD=5,
    ∴EF=8,
    ∴,
    ∴,
    ∴,设CP=k,则PA=3k,
    ∵PD⊥AB,D是边AB的中点,
    ∴PA=PB=3k,
    ∴,
    ∴,
    ∵,
    ∴,
    (3)∵∠ACB=90°,D是边AB的中点,
    ∴,
    ∵,
    ∴,
    ∵∠PBD=∠ABP,
    ∴△PBD∽△ABP,
    ∴∠BPD=∠A,
    ∵∠A=∠DCA,
    ∴∠DPE=∠DCP,
    ∵∠PDE=∠CDP,
    △DPE∽△DCP,
    ∴,
    ∵DE=3,DC=5,
    ∴.

    【点睛】
    本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.

    相关试卷

    四川省绵阳市东辰国际校2022年中考押题数学预测卷含解析: 这是一份四川省绵阳市东辰国际校2022年中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔,的值是等内容,欢迎下载使用。

    四川省阳东辰国际校2022年中考联考数学试卷含解析: 这是一份四川省阳东辰国际校2022年中考联考数学试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,如果,方程的解为等内容,欢迎下载使用。

    四川省成都东辰国际校2022年中考一模数学试题含解析: 这是一份四川省成都东辰国际校2022年中考一模数学试题含解析,共16页。试卷主要包含了﹣3的绝对值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map