2022年四川省绵阳市游仙区中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.计算结果是( )
A.0 B.1 C.﹣1 D.x
2.的一个有理化因式是( )
A. B. C. D.
3.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
A.AB=AD B.AC平分∠BCD
C.AB=BD D.△BEC≌△DEC
4.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
A.68° B.20° C.28° D.22°
5.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是( )
A.2 B.3 C.4 D.5
6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )
A.132° B.134° C.136° D.138°
7.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )
①b<0<a; ②|b|<|a|; ③ab>0; ④a﹣b>a+b.
A.①② B.①④ C.②③ D.③④
8.二次函数的图象如图所示,则下列各式中错误的是( )
A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=0
9.正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是( )
A.k>1 B.k<1 C.k>﹣1 D.k<﹣1
10.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )
A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
11.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是 ( )
A.m> B.m>4
C.m<4 D.<m<4
12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34° B.56° C.66° D.54°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.
14.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)
15.若正六边形的内切圆半径为2,则其外接圆半径为__________.
16.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.
17.方程的解为 .
18.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:
(1)本班有多少同学优秀?
(2)通过计算补全条形统计图.
(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?
20.(6分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积
21.(6分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中≌,可知,求得______.如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
求证:.
若,求的度数.
22.(8分)已知:关于x的方程x2﹣(2m+1)x+2m=0
(1)求证:方程一定有两个实数根;
(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
23.(8分)解方程:1+
24.(10分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC=36°,求∠CAO度数.
25.(10分)计算:﹣(﹣2)2+|﹣3|﹣20180×
26.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
27.(12分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题解析:.
故选C.
考点:分式的加减法.
2、B
【解析】
找出原式的一个有理化因式即可.
【详解】
的一个有理化因式是,
故选B.
【点睛】
此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.
3、C
【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,
∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.
在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,
∴Rt△BCE≌Rt△DCE(HL).
∴选项ABD都一定成立.
故选C.
4、D
【解析】
试题解析:∵四边形ABCD为矩形,
∴∠BAD=∠ABC=∠ADC=90°,
∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,
∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
∵∠2=∠1=112°,
而∠ABD=∠D′=90°,
∴∠3=180°-∠2=68°,
∴∠BAB′=90°-68°=22°,
即∠α=22°.
故选D.
5、B
【解析】
由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.
【详解】
∵数轴上的点 A,B 分别与实数﹣1,1 对应,
∴AB=|1﹣(﹣1)|=2,
∴BC=AB=2,
∴与点 C 对应的实数是:1+2=3.
故选B.
【点睛】
本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.
6、B
【解析】
过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
7、B
【解析】
分析:本题是考察数轴上的点的大小的关系.
解析:由图知,b<0|a|,故②错误,因为b<0a+b,所以④正确.
故选B.
8、B
【解析】
根据二次函数的图象与性质逐一判断即可.
【详解】
解:由图象可知抛物线开口向上,
∴,
∵对称轴为,
∴,
∴,
∴,故D正确,
又∵抛物线与y轴交于y轴的负半轴,
∴,
∴,故A正确;
当x=1时,,
即,故B错误;
当x=-1时,
即,
∴,故C正确,
故答案为:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.
9、D
【解析】
根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.
【详解】
解:∵正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,
∴k+1<0,
解得,k<-1;
故选D.
【点睛】
本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
10、D
【解析】
直接利用配方法将原式变形,进而利用平移规律得出答案.
【详解】
y=x2﹣6x+21
=(x2﹣12x)+21
=[(x﹣6)2﹣16]+21
=(x﹣6)2+1,
故y=(x﹣6)2+1,向左平移2个单位后,
得到新抛物线的解析式为:y=(x﹣4)2+1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.
11、B
【解析】
根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.
【详解】
解:∵点A(m-1,1-2m)在第四象限,
∴
解不等式①得,m>1,
解不等式②得,m>
所以,不等式组的解集是m>1,
即m的取值范围是m>1.
故选B.
【点睛】
本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
12、B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.73×1.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将17.3万用科学记数法表示为1.73×1.
故答案为1.73×1.
【点睛】
本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
14、1.
【解析】
试题解析:在RtΔABC中,sin34°=
∴AC=AB×sin34°=500×0.56=1米.
故答案为1.
15、
【解析】
根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.
【详解】
解:如图,连接、,作于;
则,
∵六边形正六边形,
∴是等边三角形,
∴,
∴,
∴正六边形的内切圆半径为2,则其外接圆半径为.
故答案为.
【点睛】
本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.
16、35°
【解析】
∵四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,
∴PE是△ABD的中位线,PF是△BDC的中位线,
∴PE=AD,PF=BC,
又∵AD=BC,
∴PE=PF,
∴∠PFE=∠PEF=35°.
故答案为35°.
17、.
【解析】
试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:
,经检验,是原方程的根.
18、140°
【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,
∴EF是△ABD的中位线,
∴EF∥BD,BD=2EF=12,
∴∠ADB=∠AFE=50°,
∵BC=15,CD=9,BD=12,
∴BC2=225,CD2=81,BD2=144,
∴CD2+BD2=BC2,
∴∠BDC=90°,
∴∠ADC=∠ADB+∠BDC=50°+90°=140°.
故答案为:140°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.
【解析】
(1)根据统计图即可得出结论;
(2)先计算出优秀的学生,再补齐统计图即可;
(3)根据图2的数值计算即可得出结论.
【详解】
(1)本班有学生:20÷50%=40(名),
本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名),
答:本班有4名同学优秀;
(2)成绩一般的学生有:40×30%=12(名),
成绩优秀的有4名同学,
补全的条形统计图,如图所示;
(3)3000×50%=1500(名),
答:该校3000人有1500人成绩良好.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点.
20、(1),N(3,6);(2)y=-x+2,S△OMN=3.
【解析】
(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
【详解】
解:(1)∵点M是AB边的中点,∴M(6,3).
∵反比例函数y=经过点M,∴3=.∴k=1.
∴反比例函数的解析式为y=.
当y=6时,x=3,∴N(3,6).
(2)由题意,知M(6,2),N(2,6).
设直线MN的解析式为y=ax+b,则
,
解得,
∴直线MN的解析式为y=-x+2.
∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
【点睛】
本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.
21、阅读发现:90°;(1)证明见解析;(2)100°
【解析】
阅读发现:只要证明,即可证明.
拓展应用:欲证明,只要证明≌即可.
根据即可计算.
【详解】
解:如图中,四边形ABCD是正方形,
,,
≌,
,
,
,
,
,
,
故答案为
为等边三角形,
,.
为等边三角形,
,.
四边形ABCD为矩形,
,.
.
,,
.
在和中,
,
≌.
;
≌,
,
.
【点睛】
本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.
22、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
【解析】
试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
(2)先讨论x1,x2的正负,再根据根与系数的关系求解.
试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
故方程一定有两个实数根;
(2)①当x1≥0,x2≥0时,即x1=x2,
∴△=(2m﹣1)2=0,
解得m=;
②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
∴x1+x2=2m+1=0,
解得:m=﹣;
③当x1≤0,x2≤0时,即﹣x1=﹣x2,
∴△=(2m﹣1)2=0,
解得m=;
综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
23、无解.
【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.
【详解】
解:去分母得:x2﹣3x﹣x2=3x﹣18,
解得:x=3,
经检验x=3是增根,分式方程无解.
【点睛】
题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
24、(1)证明见解析(2)18°
【解析】
(1)根据HL证明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.
【详解】
(1)证明:∵∠D=∠C=90°,
∴△ABC和△BAD都是Rt△,
在Rt△ABC和Rt△BAD中,
,
∴Rt△ABC≌Rt△BAD(HL);
(2)∵Rt△ABC≌Rt△BAD,
∴∠ABC=∠BAD=36°,
∵∠C=90°,
∴∠BAC=54°,
∴∠CAO=∠CAB﹣∠BAD=18°.
【点睛】
本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”.
25、﹣1
【解析】
根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
【详解】
原式=﹣1+3﹣1×3=﹣1.
【点睛】
本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
26、(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
27、(1)证明见解析;(1)2
【解析】
分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
(1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.
点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
2024年四川省绵阳市游仙区中考数学模拟试卷(含解析): 这是一份2024年四川省绵阳市游仙区中考数学模拟试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省绵阳市游仙区中考数学三诊试卷(含解析): 这是一份2023年四川省绵阳市游仙区中考数学三诊试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省绵阳市涪城区中考数学模拟试卷(含解析): 这是一份2023年四川省绵阳市涪城区中考数学模拟试卷(含解析),共29页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。