|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年四川省泸州天立国际学校中考一模数学试题含解析
    立即下载
    加入资料篮
    2022年四川省泸州天立国际学校中考一模数学试题含解析01
    2022年四川省泸州天立国际学校中考一模数学试题含解析02
    2022年四川省泸州天立国际学校中考一模数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省泸州天立国际学校中考一模数学试题含解析

    展开
    这是一份2022年四川省泸州天立国际学校中考一模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,平面直角坐标系中,若点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.若3x>﹣3y,则下列不等式中一定成立的是 ( )
    A. B. C. D.
    2.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=(  )

    A. B.1 C. D.
    3.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
    A. B.
    C. D.
    4.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    5.如图,中,E是BC的中点,设,那么向量用向量表示为( )

    A. B. C. D.
    6.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:
    ①a、b同号;
    ②当x=1和x=3时,函数值相等;
    ③4a+b=1;
    ④当y=﹣2时,x的值只能取1;
    ⑤当﹣1<x<5时,y<1.
    其中,正确的有(  )

    A.2个 B.3个 C.4个 D.5个
    7.如图,已知直线 PQ⊥MN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使△ABC是等腰三角形,则这样的 C 点有( )

    A.3 个 B.4 个 C.7 个 D.8 个
    8.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有(  )

    A.1 B.2 C.3 D.4
    9.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    10.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于(  )

    A.10° B.12.5° C.15° D.20°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价.设银杏树的单价为x元,可列方程为______.
    12.不等式组的解集为_____.
    13.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.
    (1)AB的长等于_____;
    (2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.

    14.函数y=中,自变量x的取值范围是________.
    15.如果x3nym+4与﹣3x6y2n是同类项,那么mn的值为_____.
    16.计算:2﹣1+=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.
    (1)试判断∠AED与∠C的数量关系,并说明理由;
    (2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为   .

    18.(8分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:
    气温x(℃)
    0
    5
    10
    15
    20
    音速y(m/s)
    331
    334
    337
    340
    343
    (1)求y与x之间的函数关系式:
    (2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?
    19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:

    (1)a=   ,b=   ,c=   ;
    (2)扇形统计图中表示C等次的扇形所对的圆心角的度数为   度;
    (3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
    20.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为   ,图①中m的值为   ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

    21.(8分)解不等式 ,并把它的解集表示在数轴上.

    22.(10分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.
    如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.
    23.(12分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:

    根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
    24.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
    故选A.
    2、D
    【解析】
    由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
    【详解】
    如图,连接AC交BE于点O,
    ∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
    ∴AB=BE,
    ∵四边形AEHB为菱形,
    ∴AE=AB,
    ∴AB=AE=BE,
    ∴△ABE是等边三角形,
    ∵AB=3,AD=,
    ∴tan∠CAB=,
    ∴∠BAC=30°,
    ∴AC⊥BE,
    ∴C在对角线AH上,
    ∴A,C,H共线,
    ∴AO=OH=AB=,
    ∵OC=BC=,
    ∵∠COB=∠OBG=∠G=90°,
    ∴四边形OBGM是矩形,
    ∴OM=BG=BC=,
    ∴HM=OH﹣OM=,
    故选D.

    【点睛】
    本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
    3、D
    【解析】
    试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,
    ∴PA+PC=BC.故选D.
    考点:作图—复杂作图.
    4、C
    【解析】
    由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
    【详解】
    解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y轴的负半轴,
    ∴c<1;故①正确;
    ②对称轴
    ∴ ∴b<1;
    故②正确;
    ③根据图示知,二次函数与x轴有两个交点,所以,即,故③错误
    ④故本选项正确.
    正确的有3项
    故选C.
    【点睛】
    本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置.
    5、A
    【解析】
    根据,只要求出即可解决问题.
    【详解】
    解:四边形ABCD是平行四边形,






    故选:A.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    6、A
    【解析】
    根据二次函数的性质和图象可以判断题目中各个小题是否成立.
    【详解】
    由函数图象可得,
    a>1,b<1,即a、b异号,故①错误,
    x=-1和x=5时,函数值相等,故②错误,
    ∵-=2,得4a+b=1,故③正确,
    由图象可得,当y=-2时,x=1或x=4,故④错误,
    由图象可得,当-1<x<5时,y<1,故⑤正确,
    故选A.
    【点睛】
    考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
    7、D
    【解析】
    试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.
    解:使△ABC是等腰三角形,
    当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.
    当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.
    当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.
    所以共8个.
    故选D.

    点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.
    8、C
    【解析】
    ①图中有3个等腰直角三角形,故结论错误;
    ②根据ASA证明即可,结论正确;
    ③利用面积法证明即可,结论正确;
    ④利用三角形的中线的性质即可证明,结论正确.
    【详解】
    ∵CE⊥AB,∠ACE=45°,
    ∴△ACE是等腰直角三角形,
    ∵AF=CF,
    ∴EF=AF=CF,
    ∴△AEF,△EFC都是等腰直角三角形,
    ∴图中共有3个等腰直角三角形,故①错误,
    ∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
    ∴∠EAH=∠BCE,
    ∵AE=EC,∠AEH=∠CEB=90°,
    ∴△AHE≌△CBE,故②正确,
    ∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
    ∴BC•AD=CE2,故③正确,
    ∵AB=AC,AD⊥BC,
    ∴BD=DC,
    ∴S△ABC=2S△ADC,
    ∵AF=FC,
    ∴S△ADC=2S△ADF,
    ∴S△ABC=4S△ADF.
    故选C.
    【点睛】
    本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
    9、D
    【解析】
    分析:根据题意得出a和b的正负性,从而得出点B所在的象限.
    详解:∵点A在第三象限, ∴a<0,-b<0, 即a<0,b>0, ∴点B在第四象限,故选D.
    点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.
    10、C
    【解析】
    试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
    ∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
    ∴∠DAC=∠BAD=30°,
    ∵AD=AE(已知),
    ∴∠ADE=75°
    ∴∠EDC=90°-∠ADE=15°.
    故选C.
    考点:本题主要考查了等腰三角形的性质,三角形内角和定理
    点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据银杏树的单价为x元,则玉兰树的单价为1.5x元,根据“某小区购买了银杏树和玉兰树共1棵”列出方程即可.
    【详解】
    设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意,得:
    1.
    故答案为:1.
    【点睛】
    本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
    12、﹣2≤x<
    【解析】
    根据解不等式的步骤从而得到答案.
    【详解】

    解不等式①可得:x≥-2,
    解不等式②可得:x<,
    故答案为-2≤x<.
    【点睛】
    本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.
    13、 见图形
    【解析】
    分析:(Ⅰ)利用勾股定理计算即可;
    (Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;
    详解:(Ⅰ)AB的长==;
    (Ⅱ)由题意:连接AC、BD.易知:AC∥BD,
    可得:EC:ED=AC:BD=3:1.
    取格点G、H,连接GH交DE于F.
    ∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    ∵BI∥DJ,∴BK:DK=BI:DJ=5:2.
    连接EK交BF于P,可证BP:PF=5:3.

    故答案为(Ⅰ);
    (Ⅱ)由题意:连接AC、BD.
    易知:AC∥BD,可得:EC:ED=AC:BD=3:1,
    取格点G、H,连接GH交DE于F.
    因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    因为BI∥DJ,所以BK:DK=BI:DJ=5:2,
    连接EK交BF于P,可证BP:PF=5:3.
    点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
    14、x≤1
    【解析】
    分析:根据二次根式有意义的条件解答即可.
    详解:
    ∵二次根式有意义,被开方数为非负数,
    ∴1 -x≥0,
    解得x≤1.
    故答案为x≤1.
    点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.
    15、0
    【解析】
    根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.
    故答案为0
    点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.
    16、
    【解析】
    根据负整指数幂的性质和二次根式的性质,可知=.
    故答案为.

    三、解答题(共8题,共72分)
    17、(1)∠AED=∠C,理由见解析;(2)
    【解析】
    (1)根据切线的性质和圆周角定理解答即可;
    (2)根据勾股定理和三角函数进行解答即可.
    【详解】
    (1)∠AED=∠C,证明如下:
    连接BD,

    可得∠ADB=90°,
    ∴∠C+∠DBC=90°,
    ∵CB是⊙O的切线,
    ∴∠CBA=90°,
    ∴∠ABD+∠DBC=90°,
    ∴∠ABD=∠C,
    ∵∠AEB=∠ABD,
    ∴∠AED=∠C,
    (2)连接BE,
    ∴∠AEB=90°,
    ∵∠C=60°,
    ∴∠CAB=30°,
    在Rt△DAB中,AD=3,∠ADB=90°,
    ∴cos∠DAB=,
    解得:AB=2,
    ∵E是半圆AB的中点,
    ∴AE=BE,
    ∵∠AEB=90°,
    ∴∠BAE=45°,
    在Rt△AEB中,AB=2,∠ADB=90°,
    ∴cos∠EAB=,
    解得:AE=.
    故答案为
    【点睛】
    此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
    18、 (1) y=x+331;(2)1724m.
    【解析】
    (1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.
    【详解】
    解:(1)设y=kx+b,∴
    ∴k=,
    ∴y=x+331.
    (2)当x=23时,y= x23+331=344.8
    ∴5344.8=1724.
    ∴此人与烟花燃放地相距约1724m.
    【点睛】
    此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.
    19、(1)2、45、20;(2)72;(3)
    【解析】
    分析:(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;
    (2)用360°乘以C等次百分比可得;
    (3)画出树状图,由概率公式即可得出答案.
    详解:(1)本次调查的总人数为12÷30%=40人,
    ∴a=40×5%=2,b=×100=45,c=×100=20,
    (2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,
    (3)画树状图,如图所示:

    共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,
    故P(选中的两名同学恰好是甲、乙)=.
    点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.
    20、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
    【解析】
    (Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
    【详解】
    解:(Ⅰ)本次接受随机抽样调查的学生人数为: =50(人),
    ∵×100=31%,
    ∴图①中m的值为31.
    故答案为50、31;
    (Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,
    ∴这组数据的众数为4;
    ∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,
    ∴这组数据的中位数是3;
    由条形统计图可得=3.1,
    ∴这组数据的平均数是3.1.
    (Ⅲ)1500×18%=410(人).
    答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、x<5;数轴见解析
    【解析】
    【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.
    【详解】移项,得 ,
    去分母,得 ,
    移项,得,
    ∴不等式的解集为,
    在数轴上表示如图所示:

    【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.
    22、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且
    【解析】
    (1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;
    (2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;
    ②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;
    (3)由CE=CD,可得BC= CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且.
    【详解】
    (1)解:∵直线l与以BC为直径的圆O相切于点C.
    ∴∠BCE=90°,
    又∵BC为直径,
    ∴∠BFC=∠CFE=90°,
    ∵∠FEC=∠CEB,
    ∴△CEF∽△BEC,
    ∴,
    ∵BE=15,CE=9,
    即:,
    解得:EF= ;
    (2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,
    ∴∠ABF=∠FCD,
    同理:∠AFB=∠CFD,
    ∴△CDF∽△BAF;
    ②∵△CDF∽△BAF,
    ∴,
    又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,
    ∴△CEF∽△BCF,
    ∴,
    ∴,
    又∵AB=BC,
    ∴CE=CD;
    (3)解:∵CE=CD,
    ∴BC=CD=CE,
    在Rt△BCE中,tan∠CBE=,
    ∴∠CBE=30°,
    故 为60°,
    ∴F在直径BC下方的圆弧上,且.

    【点睛】
    考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.
    23、 (1)1000;(2)54°;(3)见解析;(4)32万人
    【解析】
    根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.
    【详解】
    解:
    (1)400÷40%=1000(人)
    (2)360°×=54°,
    故答案为:1000人; 54° ;
    (3)1-10%-9%-26%-40%=15%
    15%×1000=150(人)

    (4)80×=52.8(万人)
    答:总人数为52.8万人.
    【点睛】
    本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.
    24、(1)2400个, 10天;(2)1人.
    【解析】
    (1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即为原计划安排的工人人数.
    【详解】
    解:(1)解:设原计划每天生产零件x个,由题意得,

    解得x=2400,
    经检验,x=2400是原方程的根,且符合题意.
    ∴规定的天数为24000÷2400=10(天).
    答:原计划每天生产零件2400个,规定的天数是10天.
    (2)设原计划安排的工人人数为y人,由题意得,
    [5×20×(1+20%)×+2400] ×(10-2)=24000,
    解得,y=1.
    经检验,y=1是原方程的根,且符合题意.
    答:原计划安排的工人人数为1人.
    【点睛】
    本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.

    相关试卷

    2024年四川省泸州七中佳德学校中考数学一模试卷(含解析): 这是一份2024年四川省泸州七中佳德学校中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省泸州市天立学校中考数学二模试卷: 这是一份2024年四川省泸州市天立学校中考数学二模试卷,共26页。试卷主要包含了选择题,本大题共3个小题,每题6分,本大题共2个小题,每题7分等内容,欢迎下载使用。

    四川省内江市市中区市中区天立学校2023-2024学年九年级上册期中数学试题(含解析): 这是一份四川省内江市市中区市中区天立学校2023-2024学年九年级上册期中数学试题(含解析),共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map