|试卷下载
搜索
    上传资料 赚现金
    2022年浙江省富阳市新登镇中学共同体达标名校中考数学押题试卷含解析
    立即下载
    加入资料篮
    2022年浙江省富阳市新登镇中学共同体达标名校中考数学押题试卷含解析01
    2022年浙江省富阳市新登镇中学共同体达标名校中考数学押题试卷含解析02
    2022年浙江省富阳市新登镇中学共同体达标名校中考数学押题试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省富阳市新登镇中学共同体达标名校中考数学押题试卷含解析

    展开
    这是一份2022年浙江省富阳市新登镇中学共同体达标名校中考数学押题试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算2a2+3a2的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A. B.
    C. D.
    2.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是(  )

    A. B. C. D.
    3.方程x(x-2)+x-2=0的两个根为( )
    A., B.,
    C. , D.,
    4.估计﹣1的值在(  )
    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
    5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是(  )
    A.6  B.7 C.11 D.12
    6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    7.计算2a2+3a2的结果是( )
    A.5a4 B.6a2 C.6a4 D.5a2
    8.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )
    A.6 B.3.5 C.2.5 D.1
    9.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是(  )

    A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
    C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
    10.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是(  )
    A.3 B.4 C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:
    ①公交车的速度为400米/分钟;
    ②小刚从家出发5分钟时乘上公交车;
    ③小刚下公交车后跑向学校的速度是100米/分钟;
    ④小刚上课迟到了1分钟.
    其中正确的序号是_____.

    12.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_____.

    13.计算a3÷a2•a的结果等于_____.
    14.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    15.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).

    16.分解因式:(2a+b)2﹣(a+2b)2= .
    三、解答题(共8题,共72分)
    17.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.

    18.(8分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.
    (1)求证:∠A=2∠BDF;
    (2)若AC=3,AB=5,求CE的长.

    19.(8分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.
    (I)AC的长等于_____.
    (II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).

    20.(8分)如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.
    (1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);
    ①;②;③;④;⑤;⑥;
    (2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;
    (3)如果与相似,但面积不相等,求此时正方形的边长.

    21.(8分)如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).

    22.(10分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.
    (1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;
    (2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
    (3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?
    23.(12分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
    24.计算:
    (1)
    (2)



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,

    故选A.
    2、D
    【解析】试题分析:俯视图是从上面看到的图形.
    从上面看,左边和中间都是2个正方形,右上角是1个正方形,
    故选D.
    考点:简单组合体的三视图
    3、C
    【解析】
    根据因式分解法,可得答案.
    【详解】
    解:因式分解,得(x-2)(x+1)=0,
    于是,得x-2=0或x+1=0,
    解得x1=-1,x2=2,
    故选:C.
    【点睛】
    本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.
    4、B
    【解析】
    根据,可得答案.
    【详解】
    解:∵,
    ∴,

    ∴﹣1的值在2和3之间.
    故选B.
    【点睛】
    本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
    5、C
    【解析】
    根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
    【详解】
    ∵x+2y=5,
    ∴2x+4y=10,
    则2x+4y+1=10+1=1.
    故选C.
    【点睛】
    此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
    6、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.
    7、D
    【解析】
    直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
    【详解】
    2a2+3a2=5a2.
    故选D.
    【点睛】
    本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
    8、C
    【解析】
    因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.
    【详解】
    (1)将这组数据从小到大的顺序排列为2,3,4,5,x,
    处于中间位置的数是4,
    ∴中位数是4,
    平均数为(2+3+4+5+x)÷5,
    ∴4=(2+3+4+5+x)÷5,
    解得x=6;符合排列顺序;
    (2)将这组数据从小到大的顺序排列后2,3,4,x,5,
    中位数是4,
    此时平均数是(2+3+4+5+x)÷5=4,
    解得x=6,不符合排列顺序;
    (3)将这组数据从小到大的顺序排列后2,3,x,4,5,
    中位数是x,
    平均数(2+3+4+5+x)÷5=x,
    解得x=3.5,符合排列顺序;
    (4)将这组数据从小到大的顺序排列后2,x,3,4,5,
    中位数是3,
    平均数(2+3+4+5+x)÷5=3,
    解得x=1,不符合排列顺序;
    (5)将这组数据从小到大的顺序排列后x,2,3,4,5,
    中位数是3,
    平均数(2+3+4+5+x)÷5=3,
    解得x=1,符合排列顺序;
    ∴x的值为6、3.5或1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
    9、D
    【解析】
    试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5
    考点:列方程
    点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.
    10、C
    【解析】
    如图所示:
    过点O作OD⊥AB于点D,

    ∵OB=3,AB=4,OD⊥AB,
    ∴BD=AB=×4=2,
    在Rt△BOD中,OD=.
    故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、①②③
    【解析】
    由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.
    【详解】
    解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.
    故正确的序号是:①②③.
    【点睛】
    本题考查了一次函数的应用.
    12、1
    【解析】
    作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.
    【详解】
    作AB的中点E,连接EM、CE,

    在直角△ABC中,AB===10,
    ∵E是直角△ABC斜边AB上的中点,
    ∴CE=AB=5,
    ∵M是BD的中点,E是AB的中点,
    ∴ME=AD=2,
    ∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,
    ∴最大值为1,
    故答案为1.
    【点睛】
    本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.
    13、a1
    【解析】
    根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.
    【详解】
    解:原式=a3﹣1+1=a1.
    故答案为a1.
    【点睛】
    本题考查了同底数幂的乘除法,关键是掌握计算法则.
    14、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    15、3n+1
    【解析】
    试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个
    考点:规律型
    16、3(a+b)(a﹣b).
    【解析】
    (2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
    (2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
    试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
    (2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
    点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
    18、(1)见解析;(2)1
    【解析】
    (1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;
    (2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.
    【详解】
    (1)证明:连接AD,如图,

    ∵AB为⊙O的直径,
    ∴∠ADB=90°,
    ∵EF为切线,
    ∴OD⊥DF,
    ∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,
    ∴∠BDF=∠ODA,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠OAD=∠BDF,
    ∵D是弧BC的中点,
    ∴∠COD=∠OAD,
    ∴∠CAB=2∠BDF;
    (2)解:连接BC交OD于H,如图,
    ∵D是弧BC的中点,
    ∴OD⊥BC,
    ∴CH=BH,
    ∴OH为△ABC的中位线,
    ∴,
    ∴HD=2.5-1.5=1,
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∴四边形DHCE为矩形,
    ∴CE=DH=1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.
    19、 作a∥b∥c∥d,可得交点P与P′
    【解析】
    (1)根据勾股定理计算即可;
    (2)利用平行线等分线段定理即可解决问题.
    【详解】
    (I)AC==,
    故答案为:;
    (II)如图直线l1,直线l2即为所求;

    理由:∵a∥b∥c∥d,且a与b,b与c,c与d之间的距离相等,
    ∴CP=PP′=P′A,
    ∴S△BCP=S△ABP′=S△ABC.
    故答案为作a∥b∥c∥d,可得交点P与P′.
    【点睛】
    本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    20、(1)④⑤;(2);(3)或.
    【解析】
    (1)作于M,交于N,如图,利用三角函数的定义得到,设,则,利用勾股定理得,解得,即,,设正方形的边长为x,则,,由于,则可判断为定值;再利用得到,则可判断为定值;在中,利用勾股定理和三角函数可判断在变化,在变化,在变化;
    (2)易得四边形为矩形,则,证明,利用相似比可得到y与x的关系式;
    (3)由于,与相似,且面积不相等,利用相似比得到,讨论:当点P在点F点右侧时,则,所以,当点P在点F点左侧时,则,所以,然后分别解方程即可得到正方形的边长.
    【详解】
    (1)如图,作于M,交于N,
    在中,∵,
    设,则,
    ∵,
    ∴,解得,
    ∴,,
    设正方形的边长为x,
    在中,∵,
    ∴,
    ∴,
    在中,,
    ∴为定值;
    ∵,
    ∴,
    ∴为定值;
    在中,,
    而在变化,
    ∴在变化,在变化,
    ∴在变化,
    所以和是始终保持不变的量;

    故答案为:④⑤
    (2)∵MN⊥AP,DEFG是正方形,
    ∴四边形为矩形,
    ∴,
    ∵,
    ∴,
    ∴,
    即,

    (3)∵,与相似,且面积不相等,
    ∴,即,
    ∴,
    当点P在点F点右侧时,AP=AF+PF==,
    ∴,
    解得,
    当点P在点F点左侧时,,
    ∴,
    解得,

    综上所述,正方形的边长为或.
    【点睛】
    本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.
    21、见解析
    【解析】
    分别作∠ABC和∠ACB的平分线,它们的交点O满足条件.
    【详解】
    解:如图,点O为所作.

    【点睛】
    本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
    22、 (1)0,﹣360,101;(2)当距离为2公里时,配套工程费用最少;(3)0<m≤1.
    【解析】
    (1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,即可求解;
    (2)根据题目:配套工程费w=防辐射费+修路费分0≤x≤3和x≥3时讨论.
    ①当0≤x≤3时,配套工程费W=90x2﹣360x+101,②当x≥3时,W=90x2,分别求最小值即可;
    (3)0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=,然后讨论:x==3时和x=>3时两种情况m取值即可求解.
    【详解】
    解:(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,
    解得:a=﹣360,b=101,
    故答案为0,﹣360,101;
    (2)①当0≤x≤3时,配套工程费W=90x2﹣360x+101,
    ∴当x=2时,Wmin=720;
    ②当x≥3时,W=90x2,
    W随x最大而最大,
    当x=3时,Wmin=810>720,
    ∴当距离为2公里时,配套工程费用最少;
    (3)∵0≤x≤3,
    W=mx2﹣360x+101,(m>0),其对称轴x=,
    当x=≤3时,即:m≥60,
    Wmin=m()2﹣360()+101,
    ∵Wmin≤675,解得:60≤m≤1;
    当x=>3时,即m<60,
    当x=3时,Wmin=9m<675,
    解得:0<m<60,
    故:0<m≤1.
    【点睛】
    本题考查了二次函数的性质在实际生活中的应用.最值问题常利函数的增减性来解答.
    23、规定日期是6天.
    【解析】
    本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.
    【详解】
    解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得

    解方程可得x=6,
    经检验x=6是分式方程的解.
    答:规定日期是6天.
    24、(1);(2)1.
    【解析】
    (1)根据二次根式的混合运算法则即可;
    (2)根据特殊角的三角函数值即可计算.
    【详解】
    解:(1)原式=


    (2)原式


    【点睛】
    本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.

    相关试卷

    浙江省杭州市富阳市达标名校2022年中考数学模拟预测题含解析: 这是一份浙江省杭州市富阳市达标名校2022年中考数学模拟预测题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,2016的相反数是等内容,欢迎下载使用。

    2022年浙江省衢州市常山县达标名校中考数学押题试卷含解析: 这是一份2022年浙江省衢州市常山县达标名校中考数学押题试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,tan45º的值为,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年浙江省杭州市富阳市中考押题数学预测卷含解析: 这是一份2021-2022学年浙江省杭州市富阳市中考押题数学预测卷含解析,共24页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map