2022年云南省腾冲市第八中学中考猜题数学试卷含解析
展开这是一份2022年云南省腾冲市第八中学中考猜题数学试卷含解析,共18页。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )
A. B. C. D.
2.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
A. B. C. D.
3.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
A. B. C. D.
4.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.直角梯形 B.平行四边形 C.矩形 D.正五边形
5.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6
6.下列安全标志图中,是中心对称图形的是( )
A. B. C. D.
7.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )
A.12cm B.20cm C.24cm D.28cm
8.已知点、都在反比例函数的图象上,则下列关系式一定正确的是( )
A. B. C. D.
9.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:
尺码/cm
21.5
22.0
22.5
23.0
23.5
人数
2
4
3
8
3
学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是( )
A.平均数 B.加权平均数 C.众数 D.中位数
10.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是( )
A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A或B或C).
12.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.
13.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.
14.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM是等腰三角形时,M点的坐标为_____.
15.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.
16.关于的分式方程的解为负数,则的取值范围是_________.
三、解答题(共8题,共72分)
17.(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?
18.(8分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.
19.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线.
(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.
20.(8分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度数;
(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.
21.(8分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:1.
求:(1)背水坡AB的长度.
(1)坝底BC的长度.
22.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
23.(12分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.
(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;
(2)函数y=+1的图象与x轴、y轴交点的情况是: ;
(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 .
24.观察下列等式:
第1个等式:;
第2个等式:;
第3个等式:;
第4个等式:;
…
请解答下列问题:按以上规律列出第5个等式:a5= = ;用含有n的代数式表示第n个等式:an= = (n为正整数);求a1+a2+a3+a4+…+a100的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.
【详解】
根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.
故选B.
【点睛】
此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.
2、B
【解析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
【详解】
如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=1,∠D=90°,
在Rt△ADE中,AE===,
∵S△ABE=S矩形ABCD=1=•AE•BF,
∴BF=.
故选:B.
【点睛】
本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
3、D
【解析】
A选项:
∠1+∠2=360°-90°×2=180°;
B选项:
∵∠2+∠3=90°,∠3+∠4=90°,
∴∠2=∠4,
∵∠1+∠4=180°,
∴∠1+∠2=180°;
C选项:
∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
∵∠1+∠EFC=180°,∴∠1+∠2=180°;
D选项:∠1和∠2不一定互补.
故选D.
点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
4、D
【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.
详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;
B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
C.矩形是轴对称图形,也是中心对称图形,故此选项错误;
D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.
故选D.
点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
5、D
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.
故选D.
6、B
【解析】
试题分析:A.不是中心对称图形,故此选项不合题意;
B.是中心对称图形,故此选项符合题意;
C.不是中心对称图形,故此选项不符合题意;
D.不是中心对称图形,故此选项不合题意;
故选B.
考点:中心对称图形.
7、C
【解析】
设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径.
【详解】
设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:
2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm.
故选C.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
8、A
【解析】
分析:根据反比例函数的性质,可得答案.
详解:由题意,得
k=-3,图象位于第二象限,或第四象限,
在每一象限内,y随x的增大而增大,
∵3<6,
∴x1<x2<0,
故选A.
点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.
9、C
【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
10、A
【解析】
先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.
【详解】
解:解不等式3x﹣m+1>0,得:x>,
∵不等式有最小整数解2,
∴1≤<2,
解得:4≤m<7,
故选A.
【点睛】
本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、A
【解析】
试题分析:由题意得:SA>SB>SC,
故落在A区域的可能性大
考点: 几何概率
12、
【解析】
试题分析:解:设y=x+b,
∴3=2+b,解得:b=1.
∴函数解析式为:y=x+1.故答案为y=x+1.
考点:一次函数
点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.
13、30
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.
考点:折叠图形的性质
14、(4,6),(8﹣2,6),(2,6).
【解析】
分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.
【详解】
解:当M为顶点时,AB长为底=8,M在DC中点上,
所以M的坐标为(4, 6),
当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME==2
所以M的坐标为(8﹣2,6);
当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF==2
所以M的坐标为(2,6);
综上所述,M的坐标为(4,6),(8﹣2,6),(2,6);
故答案为:(4,6),(8﹣2,6),(2,6).
【点睛】
本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.
15、 (4,2),
【解析】
由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
【详解】
解:点、、在直线上,的横坐标是1,
,
点,,在直线上,
,,
,,
第1个正方形的面积为:;
,
,,,
第2个正方形的面积为:;
,
,,
第3个正方形的面积为:;
,
第n个正方形的面积为:.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
16、
【解析】
分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可
【详解】
分式方程去分母得:2x+a=x+1
解得:x=1-a,
由分式方程解为负数,得到1-a<0,且1-a≠-1
解得:a>1且a≠2,
故答案为: a>1且a≠2
【点睛】
此题考查分式方程的解,解题关键在于求出x的值再进行分析
三、解答题(共8题,共72分)
17、(1)购买A型学习用品400件,B型学习用品600件.(2)最多购买B型学习用品1件
【解析】
(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.
(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.
【详解】
解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得
,解得:.
答:购买A型学习用品400件,B型学习用品600件.
(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,由题意,得
20(1000﹣a)+30a≤210,
解得:a≤1.
答:最多购买B型学习用品1件
18、证明见解析.
【解析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
【详解】
解:∵AD∥BC
∴∠ADB=∠DBC
∵DC⊥BC于点C,AE⊥BD于点E
∴∠C=∠AED=90°
又∵DB=DA
∴△AED≌△DCB(AAS)
∴AE=CD
【点睛】
本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
19、(1)答案见解析;(2).
【解析】
试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.
试题解析:(1)证明:连结OD
∵OD=OB∴∠ODB=∠DBO
又AB=AC
∴∠DBO=∠C
∴∠ODB =∠C
∴OD ∥AC
又DE⊥AC
∴DE ⊥OD
∴EF是⊙O的切线.
(2)∵AB是直径
∴∠ADB=90 °
∴∠ADC=90 °
即∠1+∠2=90 °又∠C+∠2=90 °
∴∠1=∠C
∴∠1 =∠3
∴
∴
∴AD=8
在Rt△ADB中,AB=10∴BD=6
在又Rt△AED中,
∴
设BF=x
∵OD ∥AE
∴△ODF∽△AEF
∴ ,即,
解得:x=
20、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
【解析】
(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.
(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.
(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.
【详解】
(1)∵OA=OC,∠OAC=60°,
∴△OAC是等边三角形,
故∠AOC=60°.
(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;
∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,
而OC是⊙O的半径,
故PC与⊙O的位置关系是相切.
(3)如图;有三种情况:
①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣2);
劣弧MA的长为:;
②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣2);
劣弧MA的长为:;
③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,2);
优弧MA的长为:;
④当C、M重合时,C点符合M点的要求,此时M4(2,2);
优弧MA的长为:;
综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为对应的M点坐标分别为:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
【点睛】
本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.
21、(1)背水坡的长度为米;(1)坝底的长度为116米.
【解析】
(1)分别过点、作,垂足分别为点、,结合题意求得AM,MN,在中,得BM,再利用勾股定理即可.
(1)在中,求得CN即可得到BC.
【详解】
(1)分别过点、作,垂足分别为点、,
根据题意,可知(米),(米)
在中∵,∴(米),
∵,∴(米).
答:背水坡的长度为米.
(1)在中,,
∴(米),
∴(米)
答:坝底的长度为116米.
【点睛】
本题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.
22、(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
23、(1),1;(2)与x轴交于(﹣1,0),与y轴没交点;(3)答案不唯一,如:y=﹣+1.
【解析】
(1)根据函数图象的平移规律,可得答案;
(2)根据自变量与函数值的对应关系,可得答案;
(3)根据点的坐标满足函数解析式,可得答案.
【详解】
(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,
故答案为:,1;
(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点,
故答案为:与x轴交于(﹣1,0),与y轴没交点;
(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=﹣+1, 答案不唯一,
故答案为:y=﹣+1.
【点睛】
本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键.
24、(1)(2)(3)
【解析】
(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.
(3)运用变化规律计算
【详解】
解:(1)a5=;
(2)an=;
(3)a1+a2+a3+a4+…+a100
.
相关试卷
这是一份云南省曲靖市实验中学2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为等内容,欢迎下载使用。
这是一份2022年云南省腾冲市第八中学中考四模数学试题含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=,估算的运算结果应在,下列说法中正确的是等内容,欢迎下载使用。
这是一份2022届云南省盐津县中考猜题数学试卷含解析,共22页。试卷主要包含了下列计算,结果等于a4的是,的相反数是等内容,欢迎下载使用。