2022年陕西省榆林市靖边第二中学中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是( ).
A.36° B.54° C.72° D.30°
2.若关于x的方程=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
3.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为( )
A. B. C.π D.
4.二次函数(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是( )
A.4ac<b2 B.abc<0 C.b+c>3a D.a<b
5.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
A. B. C. D.
6.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是( )
A. B. C. D.
7.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是 ( )
A.-3 B.0 C.3 D.9
8.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )
A.甲的速度是10km/h B.乙的速度是20km/h
C.乙出发h后与甲相遇 D.甲比乙晚到B地2h
9.下列说法正确的是( )
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
10.下列各数中,最小的数是
A. B. C.0 D.
11.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌
12.实数的倒数是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知且,则=__________.
14.如图,圆锥底面半径为r cm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为 .
15.如图,若双曲线()与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_____.
16.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.
17.函数y=中自变量x的取值范围是________,若x=4,则函数值y=________.
18.用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90πcm2,围成的圆锥的底面半径为15cm,则这个圆锥的母线长为_____cm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
20.(6分)计算:=_____.
21.(6分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,
)
22.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
23.(8分)如图,已知:AD 和 BC 相交于点 O,∠A=∠C,AO=2,BO=4,OC=3,求 OD 的长.
24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.
(1)求抛物线的表达式;
(2)求∠CAB的正切值;
(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.
25.(10分)(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
26.(12分)如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)当点R与点B重合时,求t的值;
(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);
(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;
(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.
27.(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.
【详解】
解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.
又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.
故选A.
【点睛】
本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.
2、B
【解析】
解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,解得:x=,
已知关于x的方程=3的解为正数,
所以﹣2m+9>0,解得m<,
当x=3时,x==3,解得:m=,
所以m的取值范围是:m<且m≠.
故答案选B.
3、A
【解析】
试题分析:连接OB,OC,
∵AB为圆O的切线,
∴∠ABO=90°,
在Rt△ABO中,OA=,∠A=30°,
∴OB=,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC为等边三角形,
∴∠BOC=60°,
则劣弧长为.
故选A.
考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.
4、D
【解析】
根据二次函数的图象与性质逐一判断即可求出答案.
【详解】
由图象可知:△>0,
∴b2﹣4ac>0,
∴b2>4ac,
故A正确;
∵抛物线开口向上,
∴a<0,
∵抛物线与y轴的负半轴,
∴c<0,
∵抛物线对称轴为x=<0,
∴b<0,
∴abc<0,
故B正确;
∵当x=1时,y=a+b+c>0,
∵4a<0,
∴a+b+c>4a,
∴b+c>3a,
故C正确;
∵当x=﹣1时,y=a﹣b+c>0,
∴a﹣b+c>c,
∴a﹣b>0,
∴a>b,
故D错误;
故选D.
考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.
5、A
【解析】
让黄球的个数除以球的总个数即为所求的概率.
【详解】
解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
故选:A.
【点睛】
本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
6、C
【解析】
根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.
【详解】
∵△ABC为等边三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,
∴,即,
∴y=- x2+x.
故选C.
【点睛】
考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.
7、D
【解析】
解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;
把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;
把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;
把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;
把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;
把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;
把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;
把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.
8、B
【解析】
由图可知,甲用4小时走完全程40km,可得速度为10km/h;
乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.
故选B
9、D
【解析】
根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
【详解】
解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
故选D
【点睛】
本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
10、A
【解析】
应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
【详解】
解:因为在数轴上-3在其他数的左边,所以-3最小;
故选A.
【点睛】
此题考负数的大小比较,应理解数字大的负数反而小.
11、C
【解析】
试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.
考点:因式分解.
12、D
【解析】
因为=,
所以的倒数是.
故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
分析:根据相似三角形的面积比等于相似比的平方求解即可.
详解:∵△ABC∽△A′B′C′,
∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,
∴AB:A′B′=1:.
点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.
14、1.
【解析】
试题分析:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为211°的扇形,
∴2πr=×2π×10,解得r=1.
故答案为:1.
【考点】圆锥的计算.
15、.
【解析】
过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,
设OC=2x,则BD=x,
在Rt△OCE中,∠COE=60°,则OE=x,CE=,
则点C坐标为(x,),
在Rt△BDF中,BD=x,∠DBF=60°,则BF=,DF=,
则点D的坐标为(,),
将点C的坐标代入反比例函数解析式可得:,
将点D的坐标代入反比例函数解析式可得:,
则,
解得:,(舍去),
故=.故答案为.
考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质.
16、﹣18
【解析】
要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.
【详解】
a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)
=ab(a﹣b)2,
当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,
故答案为:﹣18.
【点睛】
本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.
17、x≥3 y=1
【解析】
根据二次根式有意义的条件求解即可.即被开方数是非负数,结果是x≥3,y=1.
18、1
【解析】
设这个圆锥的母线长为xcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•15•x=90π,然后解方程即可.
【详解】
解:设这个圆锥的母线长为xcm,
根据题意得•2π•15•x=90π,
解得x=1,
即这个圆锥的母线长为1cm.
故答案为1.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
【解析】
(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
【详解】
(1)解:设2018至2020年寝室数量的年平均增长率为x,
根据题意得:64(1+x)2=121,
解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
答:2018至2020年寝室数量的年平均增长率为37.5%.
(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
∵单人间的数量在20至30之间(包括20和30),
∴ ,
解得:15 ≤y≤16 .
根据题意得:w=2y+20y+121﹣6y=16y+121,
∴当y=16时,16y+121取得最大值为1.
答:该校的寝室建成后最多可供1名师生住宿.
【点睛】
本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.
20、1
【解析】
首先计算负整数指数幂和开平方,再计算减法即可.
【详解】
解:原式=9﹣3=1.
【点睛】
此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数).
21、解:设OC=x,
在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.
在Rt△BOC中,∵∠BCO=30°,∴.
∵AB=OA﹣OB=,解得.
∴OC=5米.
答:C处到树干DO的距离CO为5米.
【解析】
解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.
【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根据AB=OA-OB=2即可得出结论.
22、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
【解析】
(1)利用列举法,列举所有的可能情况即可;
(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
【详解】
(1)所有可能出现的结果如下:,,,,,,,,共9种;
(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
∴在规划1中,(小黄赢);
红心牌点数是黑桃牌点数的整倍数有4种可能,
∴在规划2中,(小黄赢).
∵,∴小黄要在游戏中获胜,小黄会选择规则1.
【点睛】
考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
23、OD=6.
【解析】
(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题.
【详解】
在△AOB与△COD中,
,
∴△AOB~△COD,
∴,
∴,
∴OD=6.
【点睛】
该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求.
24、(4)y=﹣x4﹣4x+3;(4);(3)点P的坐标是(4,0)
【解析】
(4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;
(4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;
(3) 连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入个数据可得OP的值,可得P点坐标.
【详解】
解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线,
∵a<0,抛物线开口向下,又与x轴有交点,
∴抛物线的顶点C在x轴的上方,
由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).
可设此抛物线的表达式是y=a(x+4)4+4,
由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.
因此,抛物线的表达式是y=﹣x4﹣4x+3.
(4)如图4,
点B的坐标是(0,3).连接BC.
∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,
得AB4+BC4=AC4.
∴△ABC为直角三角形,∠ABC=90°,
所以tan∠CAB=.
即∠CAB的正切值等于.
(3)如图4,连接BC,
∵OA=OB=3,∠AOB=90°,
∴△AOB是等腰直角三角形,
∴∠BAP=∠ABO=45°,
∵∠CAO=∠ABP,
∴∠CAB=∠OBP,
∵∠ABC=∠BOP=90°,
∴△ACB∽△BPO,
∴,
∴,OP=4,
∴点P的坐标是(4,0).
【点睛】
本题主要考查二次函数的图像与性质,综合性大.
25、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
【解析】
(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
【详解】
(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,
,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴,
∵AB=BC,
∴∠BAC=(180°﹣∠ABC),
∵AM=MN
∴∠MAN=(180°﹣∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN
∴,
∴=cos45°=,
∴,
∴BM=2,
∴CM=BC﹣BM=8,
在Rt△AMC,
AM=,
∴EF=AM=2.
【点睛】
本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
26、(1);(2)(9﹣t);(3)①S =﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.
【解析】
(1)根据题意点R与点B重合时t+t=3,即可求出t的值;
(2)根据题意运用t表示出PQ即可;
(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;
(3)根据等腰三角形的性质即可得出结论.
【详解】
解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,
∴PQ=PR,∠QPR=90°,
∴△QPR为等腰直角三角形.
当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=t.
∵点R与点B重合,
∴AP+PR=t+t=AB=3,
解得:t=.
(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,
∵tanA=,
∴tanC=,sinC=,
∴PQ=CP•sinC=(9﹣t).
(3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.
∵△KBR∽△QAR,
∴ =,
∴ =,
∴KM=(t﹣3)=t﹣,
∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.
②如图2中,当3<t≤3时,重叠部分是四边形PQKB.
S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.
③如图3中,当3<t<9时,重叠部分是△PQK.
S=•S△PQC=××(9﹣t)•(9﹣t)=(9﹣t)2.
(3)如图3中,
①当DC=DP1=3时,易知AP1=3,t=3.
②当DC=DP2时,CP2=2•CD•,
∴BP2=,
∴t=3+.
③当CD=CP3时,t=4.
④当CP3=DP3时,CP3=2÷,
∴t=9﹣=.
综上所述,满足条件的t的值为3或或4或.
【点睛】
本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
27、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
2022年陕西省陕西师范大附属中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年陕西省陕西师范大附属中学中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列调查中适宜采用抽样方式的是,下列说法正确的是,下列计算,结果等于a4的是等内容,欢迎下载使用。
2022年陕西省先电子科技中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年陕西省先电子科技中学中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,若分式方程无解,则a的值为等内容,欢迎下载使用。
2022年陕西省滨河中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年陕西省滨河中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了下列判断错误的是,如下图所示,该几何体的俯视图是,中国古代在利用“计里画方”等内容,欢迎下载使用。

