|试卷下载
搜索
    上传资料 赚现金
    2022年四川省成都七中学育才中学中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022年四川省成都七中学育才中学中考数学考试模拟冲刺卷含解析01
    2022年四川省成都七中学育才中学中考数学考试模拟冲刺卷含解析02
    2022年四川省成都七中学育才中学中考数学考试模拟冲刺卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省成都七中学育才中学中考数学考试模拟冲刺卷含解析

    展开
    这是一份2022年四川省成都七中学育才中学中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了答题时请按要求用笔,某校八等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若分式有意义,则a的取值范围是(  )
    A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数
    2.下列图形中,是正方体表面展开图的是( )
    A. B. C. D.
    3.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )

    A.4个 B.3个 C.2个 D.1个
    4.已知一个正n边形的每个内角为120°,则这个多边形的对角线有(  )
    A.5条 B.6条 C.8条 D.9条
    5.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是(  )
    A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3
    6.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的(  )
    A.中位数 B.众数 C.平均数 D.方差
    7.不解方程,判别方程2x2﹣3x=3的根的情况(  )
    A.有两个相等的实数根 B.有两个不相等的实数根
    C.有一个实数根 D.无实数根
    8.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )

    A.∠ABD=∠C B.∠ADB=∠ABC C. D.
    9.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=(  )

    A.15° B.30° C.45° D.60°
    10.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是(  )
    A.38 B.39 C.40 D.42
    二、填空题(共7小题,每小题3分,满分21分)
    11.关于的一元二次方程有两个相等的实数根,则________.
    12.函数中,自变量的取值范围是_____.
    13.不等式5x﹣3<3x+5的非负整数解是_____.
    14.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.
    15.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.
    16.设、是一元二次方程的两实数根,则的值为 .
    17.如图,数轴上不同三点对应的数分别为,其中,则点表示的数是__________.

    三、解答题(共7小题,满分69分)
    18.(10分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
    (1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
    (2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.

    19.(5分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.

    20.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是   度.若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

    21.(10分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.
    (1)求证:;
    (2)当AC=2,CD=1时,求⊙O的面积.

    22.(10分)综合与实践﹣猜想、证明与拓广
    问题情境:
    数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.
    猜想证明
    (1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:   ;
    (2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:
    小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…
    小丽:连接AF,图中出现新的等腰三角形,如△AFB,…
    小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.
    请你参考同学们的思路,完成证明;
    (3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;
    联系拓广:
    (4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).

    23.(12分)已知PA与⊙O相切于点A,B、C是⊙O上的两点

    (1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小
    (2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小
    24.(14分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.
    求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    分析:根据分母不为零,可得答案
    详解:由题意,得
    ,解得
    故选A.
    点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.
    2、C
    【解析】
    利用正方体及其表面展开图的特点解题.
    【详解】
    解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.
    故选C.
    【点睛】
    本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.
    3、B
    【解析】
    解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
    ∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
    ∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
    ∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
    ∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
    故选:B.
    【点睛】
    本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
    4、D
    【解析】
    多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.
    【详解】
    解:∵多边形的每一个内角都等于120°,
    ∴每个外角是60度,
    则多边形的边数为360°÷60°=6,
    则该多边形有6个顶点,
    则此多边形从一个顶点出发的对角线共有6﹣3=3条.
    ∴这个多边形的对角线有(6×3)=9条,
    故选:D.
    【点睛】
    本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.
    5、C
    【解析】
    根据不等式的性质得出x的解集,进而解答即可.
    【详解】
    ∵-1<2x+b<1
    ∴,
    ∵关于x的不等式组-1<2x+b<1的解满足0<x<2,
    ∴,
    解得:-3≤b≤-1,
    故选C.
    【点睛】
    此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.
    6、A
    【解析】
    7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,
    故选A.
    【点睛】
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.
    7、B
    【解析】
    一元二次方程的根的情况与根的判别式有关,
    ,方程有两个不相等的实数根,故选B
    8、C
    【解析】
    由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
    【详解】
    ∵∠A是公共角,
    ∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
    当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
    AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
    故选C.
    9、B
    【解析】
    根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.
    【详解】
    解:∵OA=AB,OA=OB,
    ∴△AOB是等边三角形,
    ∴∠AOB=60°,
    ∴∠ACB=30°,
    故选B.
    【点睛】
    本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
    10、B
    【解析】
    根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
    【详解】
    解:由于共有6个数据,
    所以中位数为第3、4个数的平均数,即中位数为=39,
    故选:B.
    【点睛】
    本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.

    二、填空题(共7小题,每小题3分,满分21分)
    11、-1.
    【解析】
    根据根的判别式计算即可.
    【详解】
    解:依题意得:
    ∵关于的一元二次方程有两个相等的实数根,
    ∴= =4-41(-k)=4+4k=0
    解得,k=-1.
    故答案为:-1.
    【点睛】
    本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.
    12、
    【解析】
    根据被开方式是非负数列式求解即可.
    【详解】
    依题意,得,
    解得:,
    故答案为:.
    【点睛】
    本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
    13、0,1,2,1
    【解析】
    5x﹣1<1x+5,
    移项得,5x﹣1x<5+1,
    合并同类项得,2x<8,
    系数化为1得,x<4
    所以不等式的非负整数解为0,1,2,1;
    故答案为0,1,2,1.
    【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键.
    14、
    【解析】
    分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.
    详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=•10π•1=10π(cm1).
    故答案为10π.
    点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).
    15、1.
    【解析】
    由题意,得
    b−1=−1,1a=−4,
    解得b=−1,a=−1,
    ∴ab=(−1) ×(−1)=1,
    故答案为1.
    16、27
    【解析】
    试题分析:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.
    故答案为27.
    点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.
    17、1
    【解析】
    根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解.
    【详解】
    ∵数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,
    ∴b=3+(-4)=-1,
    ∵|b|=|c|,
    ∴c=1.
    故答案为1.
    【点睛】
    考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标.

    三、解答题(共7小题,满分69分)
    18、(1)45°;(2)26°.
    【解析】
    (1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
    (2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
    【详解】
    (1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
    ∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
    ∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
    ∴∠ABD=45°;

    (2)连接OD,
    ∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
    ∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
    ∵∠AOD是△ODP的一个外角,
    ∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
    ∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
    ∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
    【点睛】
    本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    19、65°
    【解析】
    ∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,
    ∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.
    ∵AP平分∠EAB,
    ∴∠PAB=12∠EAB.
    同理可得,∠ABP=∠ABC.
    ∵∠P+∠PAB+∠PBA=180°,
    ∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.
    20、(1)50;(2)①6;②1
    【解析】
    试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
    (2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
    ②当点P与M重合时,△PBC周长的值最小,于是得到结论.
    试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
    (2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
    ②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.

    21、(1)证明见解析;(2).
    【解析】
    (1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;
    (2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.
    【详解】
    证明:连接OD,

    ∵BC为圆O的切线,
    ∴OD⊥CB,
    ∵AC⊥CB,
    ∴OD∥AC,
    ∴∠CAD=∠ODA,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠OAD,
    则 ;
    (2)解:连接ED,
    在Rt△ACD中,AC=2,CD=1,
    根据勾股定理得:AD= ,
    ∵∠CAD=∠OAD,∠ACD=∠ADE=90°,
    ∴△ACD∽△ADE,
    ∴,即AD2=AC•AE,
    ∴AE=,即圆的半径为 ,
    则圆的面积为 .
    【点睛】
    此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.
    22、 (1) GF=GD,GF⊥GD;(2)见解析;(3)见解析;(4) 90°﹣.
    【解析】
    (1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;
    (2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;
    (3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;
    (4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.
    【详解】
    解:(1)GF=GD,GF⊥GD,
    理由:∵四边形ABCD是正方形,
    ∴∠ABD=∠ADB=45°,∠BAD=90°,
    ∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,
    ∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,
    ∴∠DBF=90°,
    ∴GF⊥GD,
    ∵∠BAD=∠BAF=90°,
    ∴点F,A,D在同一条线上,
    ∵∠F=∠ADB,
    ∴GF=GD,
    故答案为GF=GD,GF⊥GD;
    (2)连接AF,∵点D关于直线AE的对称点为点F,
    ∴直线AE是线段DF的垂直平分线,
    ∴AF=AD,GF=GD,
    ∴∠1=∠2,∠3=∠FDG,
    ∴∠1+∠3=∠2+∠FDG,
    ∴∠AFG=∠ADG,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,
    设∠BAF=n,
    ∴∠FAD=90°+n,
    ∵AF=AD=AB,
    ∴∠FAD=∠ABF,
    ∴∠AFB+∠ABF=180°﹣n,
    ∴∠AFB+∠ADG=180°﹣n,
    ∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,
    ∴GF⊥DG,
    (3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,
    ∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,
    ∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=90°,
    ∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,
    ∴∠FDG=∠BDC,
    ∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,
    ∴∠FDB=∠GDC,
    在Rt△BDC中,sin∠DFG==sin45°=,
    在Rt△BDC中,sin∠DBC==sin45°=,
    ∴,
    ∴,
    ∴△BDF∽△CDG,
    ∵∠FDB=∠GDC,
    ∴∠DGC=∠DFG=45°,
    ∴∠DGC=∠FDG,
    ∴CG∥DF;
    (4)90°﹣,理由:如图3,连接AF,BD,
    ∵点D与点F关于AE对称,
    ∴AE是线段DF的垂直平分线,
    ∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,
    ∴∠DAM=90°﹣∠2=90°﹣∠1,
    ∴∠DAF=2∠DAM=180°﹣2∠1,
    ∵四边形ABCD是菱形,
    ∴AB=AD,
    ∴∠AFB=∠ABF=∠DFG+∠1,
    ∵BD是菱形的对角线,
    ∴∠ADB=∠ABD=α,
    在四边形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°
    ∴2∠DFG+2∠1+α﹣2∠1=180°,
    ∴∠DFG=90°﹣.

    【点睛】
    本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.
    23、(1)∠P=50°;(2)∠P=45°.
    【解析】
    (1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;
    (2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.
    【详解】
    解:(1)如图①,连接OB.
    ∵PA、PB与⊙O相切于A、B点,
    ∴PA=PB,
    ∴∠PAO=∠PBO=90°
    ∴∠PAB=∠PBA,
    ∵∠BAC=25°,
    ∴∠PBA=∠PAB=90°一∠BAC=65°
    ∴∠P=180°-∠PAB-∠PBA=50°;
    (2)如图②,连接AB、AD,
    ∵∠ACB=90°,
    ∴AB是的直径,∠ADB=90·
    ∵PD=DB,
    ∴PA=AB.
    ∵PA与⊙O相切于A点
    ∴AB⊥PA,
    ∴∠P=∠ABP=45°.

    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.
    24、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.
    (2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.
    【详解】
    证明:(1)∵在平行四边形ABCD中,AD∥BC,
    ∴∠AEB=∠EAD.
    ∵AE=AB,
    ∴∠ABE=∠AEB.
    ∴∠ABE=∠EAD.
    (2)∵AD∥BC,
    ∴∠ADB=∠DBE.
    ∵∠ABE=∠AEB,∠AEB=2∠ADB,
    ∴∠ABE=2∠ADB.
    ∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.
    ∴AB=AD.
    又∵四边形ABCD是平行四边形,
    ∴四边形ABCD是菱形.

    相关试卷

    四川省成都市重点中学2023届中考数学考试模拟冲刺卷含解析: 这是一份四川省成都市重点中学2023届中考数学考试模拟冲刺卷含解析,共18页。

    2022年四川省成都市彭州市中考数学考试模拟冲刺卷含解析: 这是一份2022年四川省成都市彭州市中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2022年四川省成都市锦江区七中学育才校中考数学最后冲刺模拟试卷含解析: 这是一份2022年四川省成都市锦江区七中学育才校中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体的主视图是,如图,与∠1是内错角的是,估计+1的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map