|试卷下载
搜索
    上传资料 赚现金
    2022年山东省青岛市青岛实验中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022年山东省青岛市青岛实验中考适应性考试数学试题含解析01
    2022年山东省青岛市青岛实验中考适应性考试数学试题含解析02
    2022年山东省青岛市青岛实验中考适应性考试数学试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省青岛市青岛实验中考适应性考试数学试题含解析

    展开
    这是一份2022年山东省青岛市青岛实验中考适应性考试数学试题含解析,共18页。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为(  )
    A.135×107 B.1.35×109 C.13.5×108 D.1.35×1014
    2.如果(,均为非零向量),那么下列结论错误的是(  )
    A.// B.-2=0 C.= D.
    3.在△ABC中,若=0,则∠C的度数是( )
    A.45° B.60° C.75° D.105°
    4.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是(  )
    A. B. C. D.
    5.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是(  )

    A.右转80° B.左转80° C.右转100° D.左转100°
    6.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )

    A.42 B.96 C.84 D.48
    7.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是(  )
    A.m<n B.m≤n C.m>n D.m≥n
    8.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )

    A.1 B.2 C.3 D.4
    9.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为(  )

    A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
    10.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.方程的解为    .
    12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .
    13.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.
    14.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.
    15.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.

    16.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.
    三、解答题(共8题,共72分)
    17.(8分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=   ,b=   ,点B的坐标为   ;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.

    18.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
    (Ⅰ)求二次函数的解析式及点A,B的坐标;
    (Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
    (Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.

    19.(8分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)

    20.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
    (1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
    (2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
    21.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
    (1)求证:PA是⊙O的切线;
    (2)若tan∠BAD=,且OC=4,求BD的长.

    22.(10分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.
    23.(12分)如图,在中,AB=AC,,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.

    (1)∠EDB=_____(用含的式子表示)
    (2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.
    ①根据条件补全图形;
    ②写出DM与DN的数量关系并证明;
    ③用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.
    24.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
    ①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
    时间(第x天)
    1
    2
    3
    10

    日销售量(n件)
    198
    196
    194
    ?

    ②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
    时间(第x天)
    1≤x<50
    50≤x≤90
    销售价格(元/件)
    x+60
    100
    (1)求出第10天日销售量;
    (2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
    (3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将1350000000用科学记数法表示为:1350000000=1.35×109,
    故选B.
    【点睛】
    本题考查科学记数法的表示方法. 科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.
    2、B
    【解析】
    试题解析:向量最后的差应该还是向量. 故错误.
    故选B.
    3、C
    【解析】
    根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
    【详解】
    由题意,得 cosA=,tanB=1,
    ∴∠A=60°,∠B=45°,
    ∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
    故选C.
    4、A
    【解析】
    设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.
    解:设乙骑自行车的平均速度为x千米/时,由题意得:
    =,
    故选A.
    5、A
    【解析】
    60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.
    故选A.
    6、D
    【解析】
    由平移的性质知,BE=6,DE=AB=10,
    ∴OE=DE﹣DO=10﹣4=6,
    ∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=1.
    故选D.
    【点睛】
    本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.
    7、C
    【解析】
    分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得
    距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.
    详解:∵
    ∴此抛物线对称轴为
    ∵抛物线与x轴交于两点,
    ∴当时,得



    故选C.
    点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
    8、B
    【解析】
    根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.
    【详解】
    ∴∠ADC=∠BEC=90°.
    ∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,
    ∠DCA=∠CBE,
    在△ACD和△CBE中,,
    ∴△ACD≌△CBE(AAS),
    ∴CE=AD=3,CD=BE=1,
    DE=CE−CD=3−1=2,
    故答案选:B.
    【点睛】
    本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
    9、B
    【解析】
    【分析】由已知可证△ABO∽CDO,故 ,即.
    【详解】由已知可得,△ABO∽CDO,
    所以, ,
    所以,,
    所以,AB=5.4
    故选B
    【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
    10、A
    【解析】
    根据左视图的概念得出各选项几何体的左视图即可判断.
    【详解】
    解:A选项几何体的左视图为

    B选项几何体的左视图为

    C选项几何体的左视图为

    D选项几何体的左视图为

    故选:A.
    【点睛】
    本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、.
    【解析】
    试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:
    ,经检验,是原方程的根.
    12、.
    【解析】
    根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为.
    考点:概率公式.
    13、5
    【解析】
    由题意得, ,.
    ∴原式
    14、④
    【解析】
    根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
    【详解】
    ①[0)=1,故本项错误;
    ②[x)−x>0,但是取不到0,故本项错误;
    ③[x)−x⩽1,即最大值为1,故本项错误;
    ④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
    故答案是:④.
    【点睛】
    此题考查运算的定义,解题关键在于理解题意的运算法则.
    15、
    【解析】
    先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.
    【详解】
    解:根据题意得2π×PA=3×2π×1,
    所以PA=3,
    所以圆锥的高OP=
    故答案为.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    16、-1
    【解析】
    试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.
    考点:反比例外函数k的几何意义.

    三、解答题(共8题,共72分)
    17、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.
    【解析】
    试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;
    (2)根据题意点从原点出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;
    (3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可.
    试题解析:(1)∵a、b满足
    ∴a−4=0,b−6=0,
    解得a=4,b=6,
    ∴点B的坐标是(4,6),
    故答案是:4,6,(4,6);
    (2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,
    ∴2×4=8,
    ∵OA=4,OC=6,
    ∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,
    即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);
    (3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,
    第一种情况,当点P在OC上时,
    点P移动的时间是:5÷2=2.5秒,
    第二种情况,当点P在BA上时,
    点P移动的时间是:(6+4+1)÷2=5.5秒,
    故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.
    18、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
    【解析】
    (1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
    (2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
    (3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
    【详解】
    (Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
    ∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
    令y=0,得到:x2﹣4x﹣5=0,
    解得x=﹣1或5,
    ∴A(﹣1,0),B(5,0).
    (Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
    把点Q′坐标代入y=﹣x2+4x+5,
    得到:m2﹣4m﹣5=﹣m2﹣4m+5,
    ∴m=或(舍弃),
    ∴Q(,).
    (Ⅲ)如图,作MK⊥对称轴x=2于K.

    ①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
    ∵此时点M的横坐标为1,
    ∴y=8,
    ∴M(1,8),N(2,13),
    ②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
    此时M′的横坐标为3,可得M′(3,8),N′(2,3).
    【点睛】
    本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
    19、米
    【解析】
    解:如图,过点D作DE⊥AC于点E,作DF⊥BC于点F,则有DE∥FC,DF∥EC.
    ∵∠DEC=90°,
    ∴四边形DECF是矩形,
    ∴DE=FC.
    ∵∠HBA=∠BAC=45°,
    ∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.
    又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,
    ∴△ADB是等腰三角形.
    ∴AD=BD=180(米).
    在Rt△AED中,sin∠DAE=sin30°=,
    ∴DE=180•sin30°=180×=90(米),
    ∴FC=90米,
    在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=,
    ∴BF=180•sin60°=180×(米).
    ∴BC=BF+FC=90+90=90(+1)(米).
    答:小山的高度BC为90(+1)米.

    20、(1);(2)
    【解析】
    【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
    【详解】解:(1)因为1、-1、2三个数中由两个正数,
    所以从中任意取一个球,标号为正数的概率是.
    (2)因为直线y=kx+b经过一、二、三象限,
    所以k>0,b>0,
    又因为取情况:
    k b
    1
    -1
    2
    1
    1,1
    1,-1
    1,2
    -1
    -1,1
    -1,-1
    -1.2
    2
    2,1
    2,-1
    2,2
    共9种情况,符合条件的有4种,
    所以直线y=kx+b经过一、二、三象限的概率是.
    【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
    21、(1)证明见解析;(2)
    【解析】
    试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
    (2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
    试题解析:(1)连结OB,则OA=OB.如图1,

    ∵OP⊥AB,
    ∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
    在△PAO和△PBO中,
    ∵,
    ∴△PAO≌△PBO(SSS),
    ∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
    ∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
    (2)连结BE.如图2,

    ∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
    ∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
    ∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
    ∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
    ∵AC=BC,OA=OE,即OC为△ABE的中位线.
    ∴OC=BE,OC∥BE,∴BE=2OC=3.
    ∵BE∥OP,∴△DBE∽△DPO,
    ∴,即,解得BD=.
    22、(1)4;(2)详见解析.
    【解析】
    (1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果
    (2)根据如意数的定义,求出代数式,分析取值范围即可.
    【详解】
    解:(1)∵a=2,b=﹣1
    ∴c=b2+ab﹣a+7
    =1+(﹣2)﹣2+7
    =4
    (2)∵a=3+m,b=m﹣2
    ∴c=b2+ab﹣a+7
    =(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7
    =2m2﹣4m+2
    =2(m﹣1)2
    ∵(m﹣1)2≥0
    ∴“如意数”c为非负数
    【点睛】
    本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.
    23、(1);(2)(2)①见解析;②DM=DN,理由见解析;③数量关系:
    【解析】
    (1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;
    (2)①如图,利用∠EDF=180°﹣2α画图;
    ②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;
    ③先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsinα,从而有BM+CN=BC•sinα.
    【详解】
    (1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.
    ∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.
    故答案为:α;
    (2)①如图:

    ②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.
    ∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°.
    ∵∠A=2α,∴∠EDF=180°﹣2α.
    ∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.
    在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;
    ③数量关系:BM+CN=BC•sinα.
    证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BDsinα,从而有BM+CN=BC•sinα.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.
    24、(1)1件;(2)第40天,利润最大7200元;(3)46天
    【解析】
    试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;
    (2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;
    (3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.
    试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,
    所以n关于x的一次函数表达式为n=-2x+200;
    当x=10时,n=-2×10+200=1.
    (2)设销售该产品每天利润为y元,y关于x的函数表达式为:
    当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
    ∵-2<0,∴当x=40时,y有最大值,最大值是7200;
    当50≤x≤90时,y=-120x+12000,
    ∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
    综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
    (3)在该产品销售的过程中,共有46天销售利润不低于5400元.

    相关试卷

    山东省青岛市市南区重点达标名校2021-2022学年中考适应性考试数学试题含解析: 这是一份山东省青岛市市南区重点达标名校2021-2022学年中考适应性考试数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,图中三视图对应的正三棱柱是等内容,欢迎下载使用。

    山东省青岛市青岛实验2021-2022学年中考数学适应性模拟试题含解析: 这是一份山东省青岛市青岛实验2021-2022学年中考数学适应性模拟试题含解析,共18页。试卷主要包含了点A关于原点对称的点的坐标是等内容,欢迎下载使用。

    山东省青岛市胶州实验2021-2022学年中考适应性考试数学试题含解析: 这是一份山东省青岛市胶州实验2021-2022学年中考适应性考试数学试题含解析,共18页。试卷主要包含了下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map