![2022年山西省临汾市市级名校中考数学适应性模拟试题含解析01](http://img-preview.51jiaoxi.com/2/3/13444636/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年山西省临汾市市级名校中考数学适应性模拟试题含解析02](http://img-preview.51jiaoxi.com/2/3/13444636/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年山西省临汾市市级名校中考数学适应性模拟试题含解析03](http://img-preview.51jiaoxi.com/2/3/13444636/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年山西省临汾市市级名校中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )
A.2(x1)+3x=13 B.2(x+1)+3x=13
C.2x+3(x+1)=13 D.2x+3(x1)=13
2.的值为( )
A. B.- C.9 D.-9
3.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )
A.16 B.14 C.12 D.10
4.若2<<3,则a的值可以是( )
A.﹣7 B. C. D.12
5.化简:-,结果正确的是( )
A.1 B. C. D.
6.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60° B.45° C.15° D.90°
7.下列各式中正确的是( )
A. =±3 B. =﹣3 C. =3 D.
8.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )
A.0.6×1010 B.0.6×1011 C.6×1010 D.6×1011
9.下列四个多项式,能因式分解的是( )
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
10.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是( )
A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
11.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
阅读时间(小时)
2
2.5
3
3.5
4
学生人数(名)
1
2
8
6
3
则关于这20名学生阅读小时数的说法正确的是( )
A.众数是8 B.中位数是3
C.平均数是3 D.方差是0.34
12.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.
14.关于x的分式方程有增根,则m的值为__________.
15.已知b是a,c的比例中项,若a=4,c=16,则b=________.
16.已知二次函数,与的部分对应值如下表所示:
…
-1
0
1
2
3
4
…
…
6
1
-2
-3
-2
m
…
下面有四个论断:
①抛物线的顶点为;
②;
③关于的方程的解为;
④.
其中,正确的有___________________.
17.分解因式:a3-12a2+36a=______.
18.分解因式:4ax2-ay2=________________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).
20.(6分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
21.(6分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
22.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为米.
若苗圃园的面积为72平方米,求;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
23.(8分)已知△ABC 中,AD 是∠BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H.
(1)如图 1,若∠BAC=60°.
①直接写出∠B 和∠ACB 的度数;
②若 AB=2,求 AC 和 AH 的长;
(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明.
24.(10分)(1)计算:
(2)化简:
25.(10分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
态度
非常喜欢
喜欢
一般
不知道
频数
90
b
30
10
频率
a
0.35
0.20
请你根据统计图、表,提供的信息解答下列问题:
(1)该校这次随即抽取了 名学生参加问卷调查:
(2)确定统计表中a、b的值:a= ,b= ;
(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
26.(12分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:
(1)求该区抽样调查人数;
(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;
(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?
27.(12分)阅读材料,解答问题.
材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面积为1.”
问题:
(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);
(2)猜想四边形Pn﹣1PnPn+1Pn+2的面积,并说明理由(利用图2);
(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形Pn﹣1PnPn+1Pn+2的面积(直接写出答案).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.
【详解】
设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,
根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,
可得方程为:2(x-1)+3x=1.
故选A.
【点睛】
列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.
2、A
【解析】
【分析】根据绝对值的意义进行求解即可得.
【详解】表示的是的绝对值,
数轴上表示的点到原点的距离是,即的绝对值是,
所以的值为 ,
故选A.
【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.
3、B
【解析】
根据切线长定理进行求解即可.
【详解】
∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
∴AF=AD=2,BD=BE,CE=CF,
∵BE+CE=BC=5,
∴BD+CF=BC=5,
∴△ABC的周长=2+2+5+5=14,
故选B.
【点睛】
本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
4、C
【解析】
根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.
【详解】
解:∵2<<3,
∴4<a-2<9,
∴6<a<1.
又a-2≥0,即a≥2.
∴a的取值范围是6<a<1.
观察选项,只有选项C符合题意.
故选C.
【点睛】
考查了估算无理数的大小,估算无理数大小要用夹逼法.
5、B
【解析】
先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
【详解】
【点睛】
本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
6、C
【解析】
试题解析:∵sin∠CAB=
∴∠CAB=45°.
∵,
∴∠C′AB′=60°.
∴∠CAC′=60°-45°=15°,
鱼竿转过的角度是15°.
故选C.
考点:解直角三角形的应用.
7、D
【解析】
原式利用平方根、立方根定义计算即可求出值.
【详解】
解:A、原式=3,不符合题意;
B、原式=|-3|=3,不符合题意;
C、原式不能化简,不符合题意;
D、原式=2-=,符合题意,
故选:D.
【点睛】
此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.
8、C
【解析】
解:将60000000000用科学记数法表示为:6×1.
故选C.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的一般形式是解题关键.
9、D
【解析】
试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
试题解析:x2-6x+9=(x-3)2.
故选D.
考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
10、B
【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
【点睛】
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
11、B
【解析】
A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.
【详解】
解: A、由统计表得:众数为3,不是8,所以此选项不正确;
B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;
C、平均数=,所以此选项不正确;
D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此选项不正确;
故选B.
【点睛】
本题考查方差;加权平均数;中位数;众数.
12、C
【解析】
由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得 , 求出GM的长,再利用勾股定理求解可得答案.
【详解】
解:∵四边形ABCD和四边形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
则△ADM∽△FGM,
∴,即 ,
解得:GM= ,
∴FM= = = ,
故选:C.
【点睛】
本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1:1.
【解析】
试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.
考点:相似三角形的性质.
14、1.
【解析】
去分母得:7x+5(x-1)=2m-1,
因为分式方程有增根,所以x-1=0,所以x=1,
把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,
解得:m=1,
故答案为1.
15、±8
【解析】
根据比例中项的定义即可求解.
【详解】
∵b是a,c的比例中项,若a=4,c=16,
∴b2=ac=4×16=64,
∴b=±8,
故答案为±8
【点睛】
此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
16、①③.
【解析】
根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.
【详解】
由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:
该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;
①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;
②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;
③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;
④m=﹣3,结论错误,
其中,正确的有. ①③
故答案为:①③
【点睛】
本题考查了二次函数的图像,结合图表信息是解题的关键.
17、a(a-6)2
【解析】
原式提取a,再利用完全平方公式分解即可.
【详解】
原式=a(a2-12a+36)=a(a-6)2,
故答案为a(a-6)2
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
18、a(2x+y)(2x-y)
【解析】
首先提取公因式a,再利用平方差进行分解即可.
【详解】
原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案为a(2x+y)(2x-y).
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).
【解析】
试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.
试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,
解得 ∴二次函数解析式为y=﹣x2+2x+4, 配方得y=﹣(x﹣1)2+5,
∴点M的坐标为(1,5);
(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:
∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F
把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)
∴1<5﹣m<3,解得2<m<4;
(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5) ∵MG=1,GC=5﹣4=1
∴MC==, 把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),
∵NG=GC,GM=GC, ∴∠NCG=∠GCM=45°, ∴∠NCM=90°,
由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点
①若有△PCM∽△BDC,则有
∵BD=1,CD=3, ∴CP===, ∵CD=DA=3, ∴∠DCA=45°,
若点P在y轴右侧,作PH⊥y轴, ∵∠PCH=45°,CP= ∴PH==
把x=代入y=﹣x+4,解得y=, ∴P1();
同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y= ∴P2();
②若有△PCM∽△CDB,则有 ∴CP==3 ∴PH=3÷=3,
若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;
若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7
∴P3(3,1);P4(﹣3,7).
∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).
考点:二次函数综合题
20、(1)答案见解析;(2)AB=1BE;(1)1.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;
(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;
(2)线段AB、BE之间的数量关系为:AB=1BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,
∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圆O的半径为1.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
21、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
【解析】
试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<1.
考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
22、(1)2(2)当x=4时,y最小=88平方米
【解析】
(1)根据题意得方程解即可;
(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.
解: (1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
x(31-2x)=72,即x2-15x+36=1.
解得x1=3(舍去),x2=2.
(2)依题意,得8≤31-2x≤3.解得6≤x≤4.
面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
①当x=时,S有最大值,S最大=;
②当x=4时,S有最小值,S最小=4×(31-22)=88
“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
23、(1)①45°,②;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC.证明见解析.
【解析】
(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图 1,作高线 DE,在 Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得 DE=1,AE=, 在 Rt△CDE 中,由∠ACD=45°,DE=1,可得 EC=1,AC= +1,同理可得 AH 的长;(2)如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH,易证△ACH≌△AFH,则 AC=AF,HC=HF, 根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.
【详解】
(1)①∵AD 平分∠BAC,∠BAC=60°,
∴∠BAD=∠CAD=30°,
∵AB=AD,
∴∠B==75°,
∴∠ACB=180°﹣60°﹣75°=45°;
②如图 1,过 D 作 DE⊥AC 交 AC 于点 E,
在 Rt△ADE 中,∵∠DAC=30°,AB=AD=2,
∴DE=1,AE=,
在 Rt△CDE 中,∵∠ACD=45°,DE=1,
∴EC=1,
∴AC=+1,
在 Rt△ACH 中,∵∠DAC=30°,
∴CH=AC=
∴AH==;
(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC.
证明:如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH.
易证△ACH≌△AFH,
∴AC=AF,HC=HF,
∴GH∥BC,
∵AB=AD,
∴∠ABD=∠ADB,
∴∠AGH=∠AHG,
∴AG=AH,
∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.
【点睛】
本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.
24、(1);(2)-1;
【解析】
(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;
(2)根据分式的除法和减法可以解答本题.
【详解】
(1)
=
=2-.
(2)
=
=
=
=
=-1
【点睛】
本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.
25、(1)200,;(2)a=0.45,b=70;(3)900名.
【解析】
(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
【详解】
解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
(2)“非常喜欢”频数90,a= ;
(3).
故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
【点睛】
此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
26、(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人
【解析】
(1)由“科普知识”人数及其百分比可得总人数;
(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;
(3)总人数乘以“名人传记”的百分比可得.
【详解】
(1)840÷35%=2400(人),
∴该区抽样调查的人数是2400人;
(2)2400×25%=600(人),
∴该区抽样调查最喜欢“漫画丛书”的人数是600人,
补全图形如下:
×360°=21.6°,
∴最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;
(3)从样本估计总体:14400×34%=4896(人),
答:估计最喜欢读“名人传记”的学生是4896人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.
27、 (1)2,2;(2)2,理由见解析;(3)2.
【解析】
(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3来求解;
(2)(3)由图可知,Pn﹣1、Pn、Pn+1、Pn+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,
可得Pn﹣1、Pn、Pn+1、Pn+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,将四边形面积转化为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2来解答.
【详解】
(1)作P5H5垂直于x轴,垂足为H5,
由图可知SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2==2,
SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3==2;
(2)作Pn﹣1Hn﹣1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x轴,垂足为Hn﹣1、Hn、Hn+1、Hn+2,
由图可知Pn﹣1、Pn、Pn+1、Pn+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,
代入二次函数解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,
四边形Pn﹣1PnPn+1Pn+2的面积为S四边形Pn﹣1PnPn+1Pn+2
=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2
==2;
(3)S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2
=-=2.
【点睛】
本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,
郑州市级名校2022-2023学年中考数学适应性模拟试题含解析: 这是一份郑州市级名校2022-2023学年中考数学适应性模拟试题含解析,共20页。
重庆巴蜀常春藤市级名校2022-2023学年中考数学适应性模拟试题含解析: 这是一份重庆巴蜀常春藤市级名校2022-2023学年中考数学适应性模拟试题含解析,共14页。
山西省临汾市市级名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份山西省临汾市市级名校2021-2022学年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,要使式子有意义,x的取值范围是,﹣0.2的相反数是等内容,欢迎下载使用。