2022年山东省莱州市中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图所示的几何体,它的左视图与俯视图都正确的是( )
A. B. C. D.
2.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是( )
A.主视图是中心对称图形
B.左视图是中心对称图形
C.主视图既是中心对称图形又是轴对称图形
D.俯视图既是中心对称图形又是轴对称图形
3.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.
A.+4 B.﹣9 C.﹣4 D.+9
4.如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是
A.5:2 B.3:2 C.3:1 D.2:1
5.已知二次函数 图象上部分点的坐标对应值列表如下:
x
…
-3
-2
-1
0
1
2
…
y
…
2
-1
-2
-1
2
7
…
则该函数图象的对称轴是( )
A.x=-3 B.x=-2 C.x=-1 D.x=0
6.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为( )
A.4.4×106 B.44×105 C.4×106 D.0.44×107
7.计算的值为( )
A. B.-4 C. D.-2
8.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°
9.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
10.下列命题是真命题的是( )
A.如果a+b=0,那么a=b=0 B.的平方根是±4
C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等
11.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是正方形
B.等腰梯形既是轴对称图形又是中心对称图形
C.圆的切线垂直于经过切点的半径
D.垂直于同一直线的两条直线互相垂直
12.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是( )
A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.同时掷两粒骰子,都是六点向上的概率是_____.
14.已知一组数据-3,x,-2, 3,1,6的众数为3,则这组数据的中位数为______.
15.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.
16.如图,在四边形中,,,,,,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动.若,当__时,是等腰三角形.
17.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.
18.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.
态度
非常喜欢
喜欢
一般
不知道
频数
90
b
30
10
频率
a
0.35
0.20
请你根据统计图、表,提供的信息解答下列问题:
(1)该校这次随即抽取了 名学生参加问卷调查:
(2)确定统计表中a、b的值:a= ,b= ;
(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.
20.(6分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.
七年级英语口语测试成绩统计表
成绩分
等级
人数
A
12
B
m
C
n
D
9
请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上包括B 级的学生人数.
21.(6分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
22.(8分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=,求DG的长,
23.(8分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.
图 ①
(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.
图 ②
24.(10分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.
(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.
25.(10分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
26.(12分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.
27.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.
考点:D.
2、D
【解析】
先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.
【详解】
解:A、主视图不是中心对称图形,故A错误;
B、左视图不是中心对称图形,故B错误;
C、主视图不是中心对称图形,是轴对称图形,故C错误;
D、俯视图既是中心对称图形又是轴对称图形,故D正确.
故选:D.
【点睛】
本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.
3、B
【解析】
收入和支出是两个相反的概念,故两个数字分别为正数和负数.
【详解】
收入13元记为+13元,那么支出9元记作-9元
【点睛】
本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.
4、C
【解析】
求出正六边形和阴影部分的面积即可解决问题;
【详解】
解:正六边形的面积,
阴影部分的面积,
空白部分与阴影部分面积之比是::1,
故选C.
【点睛】
本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
5、C
【解析】
由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
【详解】
解:∵x=-2和x=0时,y的值相等,
∴二次函数的对称轴为,
故答案为:C.
【点睛】
本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
6、A
【解析】4400000=4.4×1.故选A.
点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
7、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=-3=-2,
故选C.
【点睛】
本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
8、C
【解析】
由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.
【详解】
A.∵∠3=∠A,
本选项不能判断AB∥CD,故A错误;
B.∵∠D=∠DCE,
∴AC∥BD.
本选项不能判断AB∥CD,故B错误;
C.∵∠1=∠2,
∴AB∥CD.
本选项能判断AB∥CD,故C正确;
D.∵∠D+∠ACD=180°,
∴AC∥BD.
故本选项不能判断AB∥CD,故D错误.
故选:C.
【点睛】
考查平行线的判定,掌握平行线的判定定理是解题的关键.
9、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
10、D
【解析】
解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;
B、=4的平方根是±2,错误,为假命题;
C、有公共顶点且相等的两个角是对顶角,错误,为假命题;
D、等腰三角形两底角相等,正确,为真命题;
故选D.
11、C
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
解答:解:A、错误,例如对角线互相垂直的等腰梯形;
B、错误,等腰梯形是轴对称图形不是中心对称图形;
C、正确,符合切线的性质;
D、错误,垂直于同一直线的两条直线平行.
故选C.
12、C
【解析】
利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.
【详解】
∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,
∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,
∴△ABD为等边三角形,
∴AD=AB,∠BAD=60°,
∵∠BAD=∠EBC,
∴AD∥BC,
∴∠DAC=∠C,
∴∠DAC=∠E,
∵AE=AB+BE,
而AD=AB,BE=BC,
∴AD+BC=AE,
∵∠CBE=60°,
∴只有当∠E=30°时,BC⊥DE.
故选C.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.
【详解】
解:都是六点向上的概率是.
【点睛】
本题考查了概率公式的应用.
14、
【解析】
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
详解:∵-3,x,-1, 3,1,6的众数是3,
∴x=3,
先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,
∴这组数的中位数是=1.
故答案为: 1.
点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
15、110°或50°.
【解析】
由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.
【详解】
∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:
①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;
②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;
综上:∠BDF的度数为110°或50°.
故答案为110°或50°.
【点睛】
本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.
16、或.
【解析】
根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,①当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;②当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t.
【详解】
解:由运动知,,,
,,
,,
是等腰三角形,且,
①当时,过点P作PE⊥AD于点E
点在的垂直平分线上, QE=,AE=BP
,
,
,
②当时,如图,过点作于,
,
,,
,
四边形是矩形,
,,
,
在中,,
,
,
点在边上,不和重合,
,
,
此种情况符合题意,
即或时,是等腰三角形.
故答案为:或.
【点睛】
此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键.
17、
【解析】
由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.
【详解】
∵四边形ABCD、CEFG均为正方形,
∴CD=AD=3,CG=CE=5,
∴DG=2,
在Rt△DGF中, DF==,
∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,
∴∠FDG=∠IDA.
又∵∠DAI=∠DGF,
∴△DGF∽△DAI,
∴,即,解得:DI=,
∴矩形DFHI的面积是=DF•DI=,
故答案为:.
【点睛】
本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.
18、
【解析】
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得,即=,进而得到BE=.
【详解】
解:如图,
由折叠可得,∠AFE=∠A'FE,
∵A'F∥AB,
∴∠AEF=∠A'FE,
∴∠AEF=∠AFE,
∴AE=AF,
由折叠可得,AF=A'F,
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,
∵A'F∥AB,
∴△A'CF∽△BCA,
∴,即=,
解得x=,
∴BE=,
故答案为:.
【点睛】
本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)200,;(2)a=0.45,b=70;(3)900名.
【解析】
(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.
【详解】
解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);
(2)“非常喜欢”频数90,a= ;
(3).
故答案为(1)200,;(2)a=0.45,b=70;(3)900名.
【点睛】
此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.
20、 (1)60人;(2)144°;(3)288人.
【解析】
等级人数除以其所占百分比即可得;
先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;
总人数乘以A、B等级百分比之和即可得.
【详解】
解:本次被抽取参加英语口语测试的学生共有人;
级所占百分比为,
级对应的百分比为,
则扇形统计图中 C 级的圆心角度数为;
人,
答:估计英语口语达到 B级以上包括B 级的学生人数为288人.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体.
21、(30+30)米.
【解析】
解:设建筑物AB的高度为x米
在Rt△ABD 中,∠ADB=45°
∴AB=DB=x
∴BC=DB+CD= x+60
在Rt△ABC 中,∠ACB=30°,
∴tan∠ACB=
∴
∴
∴x=30+30
∴建筑物AB的高度为(30+30)米
22、 (1)证明见解析;(2)AD=;(3)DG=.
【解析】
(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
【详解】
(1)如图,连接OD,
∵AD为∠BAC的角平分线,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∴BC为圆O的切线;
(2)连接DF,由(1)知BC为圆O的切线,
∴∠FDC=∠DAF,
∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,
∴,即AD2=AB•AF=xy,
则AD= ;
(3)连接EF,在Rt△BOD中,sinB=,
设圆的半径为r,可得,
解得:r=5,
∴AE=10,AB=18,
∵AE是直径,
∴∠AFE=∠C=90°,
∴EF∥BC,
∴∠AEF=∠B,
∴sin∠AEF=,
∴AF=AE•sin∠AEF=10×=,
∵AF∥OD,
∴,即DG=AD,
∴AD=,
则DG=.
【点睛】
圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
23、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
【解析】
(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
【详解】
(1)(1)当AB是过P点的直径时,AB最长=2×2=4;
当AB⊥OP时,AB最短, AP=
∴AB=2
(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
再做△AEC的外接圆,
当D与E重合时,S△ADC最大
故此时四边形ABCD的面积最大,
∵∠ABC=90°,AB=80,BC=60
∴AC=
∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
S△ADC=
S△ABC=
∴四边形ABCD面积最大值为(2500+2400)平方米.
【点睛】
此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
24、 (1) 1;(1) ≤m<.
【解析】
(1)在Rt△ABP中利用勾股定理即可解决问题;
(1)分两种情形求出AD的值即可解决问题:①如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
【详解】
解:(1):(1)如图1中,设PD=t.则PA=5-t.
∵P、B、E共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍弃),
∴t=1时,B、E、P共线.
(1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.
作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3
易证四边形EMCQ是矩形,
∴CM=EQ=1,∠M=90°,
∴EM=,
∵∠DAC=∠EDM,∠ADC=∠M,
∴△ADC∽△DME,
∴
∴
∴AD=,
如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3
在Rt△ECQ中,QC=DM=,
由△DME∽△CDA,
∴
∴,
∴AD=,
综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围≤m<.
【点睛】
本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.
25、(1)不可能;(2).
【解析】
(1)利用确定事件和随机事件的定义进行判断;
(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
【详解】
(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
故答案为不可能;
(2)画树状图:
共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
所以某顾客该天早餐刚好得到菜包和油条的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
26、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.
【解析】
试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.
试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.
考点:1.折线统计图;2.条形统计图.
27、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)4.
【解析】试题分析:(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
试题解析:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,
x=15,
经检验x=15是原方程的解.
∴40﹣x=1.
甲,乙两种玩具分别是15元/件,1元/件;
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,
,
解得20≤y<2.
因为y是整数,甲种玩具的件数少于乙种玩具的件数,
∴y取20,21,22,23,
共有4种方案.
考点:分式方程的应用;一元一次不等式组的应用.
山东省莱州市2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份山东省莱州市2022年初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,在2和3之间的是等内容,欢迎下载使用。
2022年山东省无棣县中考数学模试卷含解析: 这是一份2022年山东省无棣县中考数学模试卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,如图,能判定EB∥AC的条件是,化简的结果是,的倒数是,《九章算术》中有这样一个问题等内容,欢迎下载使用。
2022年山东省邹平唐村中学中考数学模试卷含解析: 这是一份2022年山东省邹平唐村中学中考数学模试卷含解析,共21页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。