2022年山东省济宁市鲁桥一中学中考数学模拟精编试卷含解析
展开
这是一份2022年山东省济宁市鲁桥一中学中考数学模拟精编试卷含解析,共18页。试卷主要包含了若分式有意义,则的取值范围是,函数中,x的取值范围是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是( )
A.﹣3 B.0 C. D.﹣1
2.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差 B.极差 C.中位数 D.平均数
3.一个多边形内角和是外角和的2倍,它是( )
A.五边形 B.六边形 C.七边形 D.八边形
4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
5.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
6.在-,,0,-2这四个数中,最小的数是( )
A. B. C.0 D.-2
7.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )
A.180元 B.200元 C.225元 D.259.2元
8.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
9.若分式有意义,则的取值范围是( )
A.; B.; C.; D..
10.函数中,x的取值范围是( )
A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平行四边形 ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点 E,交 DC 的延长线于点 F,BG⊥AE,垂足为 G,BG=4,则△CEF 的周长为____.
12.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.
13.如图,四边形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.则=
14.因式分解:(a+1)(a﹣1)﹣2a+2=_____.
15.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
16.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.
17.因式分解:x2﹣4= .
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
(1)求该反比例函数的解析式;
(1)求三角形CDE的面积.
19.(5分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米.
(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)
(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:≈1.414,≈1.732).
20.(8分)已知二次函数 y=mx2﹣2mx+n 的图象经过(0,﹣3).
(1)n= _____________;
(2) 若二次函数 y=mx2﹣2mx+n 的图象与 x 轴有且只有一个交点,求 m 值;
(3) 若二次函数 y=mx2﹣2mx+n 的图象与平行于 x 轴的直线 y=5 的一个交点的横坐标为4,则另一个交点的坐标为 ;
(4) 如图,二次函数 y=mx2﹣2mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求△PAC 面积的最大值.
21.(10分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点.
求抛物线的表达式;
若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标.
22.(10分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.
23.(12分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.
24.(14分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,
∵3>2>>1>0,
∴绝对值最小的数是0,
故选:B.
2、C
【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,
故只要知道自己的分数和中位数就可以知道是否获奖了.
故选C.
3、B
【解析】
多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
【详解】
设这个多边形是n边形,根据题意得:
(n﹣2)×180°=2×310°
解得:n=1.
故选B.
【点睛】
本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
4、D
【解析】
【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
Ⅱ、作线段的垂直平分线,观察可知图③符合;
Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
Ⅳ、作角的平分线,观察可知图①符合,
所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
故选D.
【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
5、C
【解析】
解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.
点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
6、D
【解析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
在﹣,,0,﹣1这四个数中,﹣1<﹣<0<,
故最小的数为:﹣1.
故选D.
【点睛】
本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.
7、A
【解析】
设这种商品每件进价为x元,根据题中的等量关系列方程求解.
【详解】
设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.
【点睛】
本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
8、B
【解析】
根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
9、B
【解析】
分式的分母不为零,即x-2≠1.
【详解】
∵分式有意义,
∴x-2≠1,
∴.
故选:B.
【点睛】
考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
10、B
【解析】
要使有意义,
所以x+1≥0且x+1≠0,
解得x>-1.
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、8
【解析】
试题解析:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,
∴∠BAF=∠DAF,
∵AB∥DF,
∴∠BAF=∠F,
∴∠F=∠DAF,
∴△ADF是等腰三角形,AD=DF=9;
∵AD∥BC,
∴△EFC是等腰三角形,且FC=CE.
∴EC=FC=9-6=3,
∴AB=BE.
∴在△ABG中,BG⊥AE,AB=6,BG=4
可得:AG=2,
又∵BG⊥AE,
∴AE=2AG=4,
∴△ABE的周长等于16,
又∵▱ABCD,
∴△CEF∽△BEA,相似比为1:2,
∴△CEF的周长为8
12、(6,4)或(﹣4,﹣6)
【解析】
设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.
【详解】
解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,
当点P在第一象限时,x+x-2=10,
解得x=6,
∴x-2=4,
∴P(6,4);
当点P在第三象限时,-x-x+2=10,
解得x=-4,
∴x-2=-6,
∴P(-4,-6).
故答案为:(6,4)或(-4,-6).
【点睛】
本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.
13、
【解析】
连接AC,过点C作CE⊥AB的延长线于点E,,如图,先在Rt△BEC中根据含30度的直角三角形三边的关系计算出BC、CE,判断△AEC为等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.
【详解】
连接AC,过点C作CE⊥AB的延长线于点E,
∵∠ABC=2∠D=120°, ∴∠D=60°, ∵AD=CD, ∴△ADC是等边三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°, ∴∠ACB=∠DCB-∠DCA=75°-60°=15°, ∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°, ∴AE=CE,∠EBC=45°+15°=60°, ∴∠BCE=90°-60°=30°,设BE=x,则BC=2x,CE=,在RT△AEC中,AC=,∴,故答案为.
【点睛】
本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.合理作辅助线是解题的关键.
14、(a﹣1)1.
【解析】
提取公因式(a−1),进而分解因式得出答案.
【详解】
解:(a+1)(a﹣1)﹣1a+1
=(a+1)(a﹣1)﹣1(a﹣1)
=(a﹣1)(a+1﹣1)
=(a﹣1)1.
故答案为:(a﹣1)1.
【点睛】
此题主要考查了提取公因式法分解因式,找出公因式是解题关键.
15、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
【解析】
让横坐标、纵坐标为负数即可.
【详解】
在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
16、20
【解析】
利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.
【详解】
设原来红球个数为x个,
则有=,
解得,x=20,
经检验x=20是原方程的根.
故答案为20.
【点睛】
本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.
17、(x+2)(x-2).
【解析】试题分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).
考点:因式分解-运用公式法
三、解答题(共7小题,满分69分)
18、(1);(1)11.
【解析】
(1)根据正切的定义求出OA,证明△BAO∽△BEC,根据相似三角形的性质计算;
(1)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可.
【详解】
解:(1)∵tan∠ABO=,OB=4,
∴OA=1,
∵OE=1,
∴BE=6,
∵AO∥CE,
∴△BAO∽△BEC,
∴=,即=,
解得,CE=3,即点C的坐标为(﹣1,3),
∴反比例函数的解析式为:;
(1)设直线AB的解析式为:y=kx+b,
则,
解得,,
则直线AB的解析式为:,
,
解得,,,
∴当D的坐标为(6,1),
∴三角形CDE的面积=三角形CBE的面积+三角形BED的面积
=×6×3+×6×1
=11.
【点睛】
此题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、求反比例函数与一次函数的交点的方法是解题的关键.
19、(1)见解析;(2)是7.3米
【解析】
(1)图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立关于AD的方程,解方程求解.
【详解】
解:(1)如下图,
图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;
图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;
(2)设AD=x,在Rt△ABD中,∠ABD=45°,
∴BD=AD=x,
∴CD=20﹣x.
∵tan∠ACD=,
即tan30°=,
∴x==10(﹣1)≈7.3(米).
答:路灯A离地面的高度AD约是7.3米.
【点睛】
解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可.
20、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=时,△PAC的面积取最大值,最大值为
【解析】
(2)将(0,-2)代入二次函数解析式中即可求出n值;
(2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;
(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;
(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.
【详解】
解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),
∴n=﹣2.
故答案为﹣2.
(2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,
∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,
解得:m2=0,m2=﹣2.
∵m≠0,
∴m=﹣2.
(2)∵二次函数解析式为y=mx2﹣2mx﹣2,
∴二次函数图象的对称轴为直线x=﹣=2.
∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,
∴另一交点的横坐标为2×2﹣4=﹣2,
∴另一个交点的坐标为(﹣2,5).
故答案为(﹣2,5).
(4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),
∴0=9m﹣6m﹣2,
∴m=2,
∴二次函数解析式为y=x2﹣2x﹣2.
设直线AC的解析式为y=kx+b(k≠0),
将A(2,0)、C(0,﹣2)代入y=kx+b,得:
,解得:,
∴直线AC的解析式为y=x﹣2.
过点P作PD⊥x轴于点D,交AC于点Q,如图所示.
设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),
∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,
∴S△ACP=S△APQ+S△CPQ=PQ•OD+PQ•AD=﹣a2+a=﹣(a﹣)2+,
∴当a=时,△PAC的面积取最大值,最大值为 .
【点睛】
本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.
21、为;点Q的坐标为或.
【解析】
依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.
【详解】
抛物线顶点A的横坐标是,
,即,解得.
.
将代入得:,
抛物线的解析式为.
抛物线向下平移了4个单位.
平移后抛物线的解析式为,.
,
点O在PQ的垂直平分线上.
又轴,
点Q与点P关于x轴对称.
点Q的纵坐标为.
将代入得:,解得:或.
点Q的坐标为或.
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.
22、m的值是12.1.
【解析】
根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值
【详解】
由题意可得,
1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)
解得,m1=0(舍去),m2=12.1,
即m的值是12.1.
【点睛】
本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.
23、(1)证明见解析;(2).
【解析】
(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;
(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.
解:(1)∵AB=AC,∴∠B=∠C.
∵∠APD=∠B,∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∴AB•CD=CP•BP.
∵AB=AC,
∴AC•CD=CP•BP;
(2)∵PD∥AB,∴∠APD=∠BAP.
∵∠APD=∠C,∴∠BAP=∠C.
∵∠B=∠B,
∴△BAP∽△BCA,
∴.
∵AB=10,BC=12,
∴,
∴BP=.
“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.
24、(1)(2)
【解析】
试题分析:首先根据题意进行列表,然后求出各事件的概率.
试题解析:
(1)P(两次取得小球的标号相同)=;
(2)P(两次取得小球的标号的和等于4)=.
考点:概率的计算.
相关试卷
这是一份2022届浙江省杭州余杭区星桥中学中考数学模拟精编试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题等内容,欢迎下载使用。
这是一份2022届山东省济宁市鲁桥镇第一中学中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
这是一份2022届河北省石家庄市桥西区部分校中考数学模拟精编试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。