2022年山东省济南市名校中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下面的几何体中,主视图为圆的是( )
A. B. C. D.
2.关于的方程有实数根,则整数的最大值是( )
A.6 B.7 C.8 D.9
3.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为( )
A.(1+40%)×30%x B.(1+40%)(1﹣30%)x
C. D.
4.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )
A.30° B.45° C.50° D.75°
5.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是( )
A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c
6.﹣0.2的相反数是( )
A.0.2 B.±0.2 C.﹣0.2 D.2
7.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )
A. B.2 C. D.
8.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6
9.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )
A. B.﹣ C.2+ D.2﹣
10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
11.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )
A.31 B.35 C.40 D.50
12.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.
14.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.
15.如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_____.
16.分解因式:2x2-8x+8=__________.
17.如图,在平行四边形中,点在边上,将沿折叠得到,点落在对角线上.若,,,则的周长为________.
18.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率
20.(6分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且AC⊥x轴.
(1)已知A(-3,0),B(-1,0),AC=OA.
①求抛物线解析式和直线OC的解析式;
②点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)
(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF
21.(6分)先化简:,再从、2、3中选择一个合适的数作为a的值代入求值.
22.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
(1)求抛物线解析式;
(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.
23.(8分)解不等式组,并写出该不等式组的最大整数解.
24.(10分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DF•GF.
25.(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
(1)求抛物线y=ax2+bx+2的函数表达式;
(2)求直线BC的函数表达式;
(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.
26.(12分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).
(1)求抛物线F的解析式;
(1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
(3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
①判断△AA′B的形状,并说明理由;
②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
27.(12分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S
关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
B、的主视图是正方形,故B不符合题意;
C、的主视图是圆,故C符合题意;
D、的主视图是三角形,故D不符合题意;
故选C.
考点:简单几何体的三视图.
2、C
【解析】
方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
【详解】
当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整数,即a=1.
故选C.
3、D
【解析】
根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.
【详解】
由题意可得,
去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,
故选:D.
【点睛】
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
4、B
【解析】
试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.
5、C
【解析】
首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.
【详解】
解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,
∴a+b>0,c﹣b<0
∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,
故答案为a+c.
故选A.
6、A
【解析】
根据相反数的定义进行解答即可.
【详解】
负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A.
【点睛】
本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.
7、C
【解析】
试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4
所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.
考点:圆周角定理;锐角三角函数的定义.
8、D
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.
故选D.
9、D
【解析】
连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.
【详解】
解:连接OC交MN于点P,连接OM、ON,
由题意知,OC⊥MN,且OP=PC=1,
在Rt△MOP中,∵OM=2,OP=1,
∴cos∠POM==,AC==,
∴∠POM=60°,MN=2MP=2,
∴∠AOB=2∠AOC=120°,
则图中阴影部分的面积=S半圆-2S弓形MCN
=×π×22-2×(-×2×1)
=2- π,
故选D.
【点睛】
本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.
10、A
【解析】
∵∠C=90°,BC=2cm,∠A=30°,
∴AB=4,
由勾股定理得:AC=2,
∵四边形DEFG为矩形,∠C=90,
∴DE=GF=2,∠C=∠DEF=90°,
∴AC∥DE,
此题有三种情况:
(1)当0<x<2时,AB交DE于H,如图
∵DE∥AC,
∴,
即,
解得:EH=x,
所以y=•x•x=x2,
∵x 、y之间是二次函数,
所以所选答案C错误,答案D错误,
∵a=>0,开口向上;
(2)当2≤x≤6时,如图,
此时y=×2×2=2,
(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,
BF=x﹣6,与(1)类同,同法可求FN=X﹣6,
∴y=s1﹣s2,
=×2×2﹣×(x﹣6)×(X﹣6),
=﹣x2+6x﹣16,
∵﹣<0,
∴开口向下,
所以答案A正确,答案B错误,
故选A.
点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.
11、C
【解析】
根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.
【详解】
解:∵图1中棋子有5=1+2+1×2个,
图2中棋子有10=1+2+3+2×2个,
图3中棋子有16=1+2+3+4+3×2个,
…
∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,
故选C.
【点睛】
本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
12、B
【解析】
首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.
【详解】
连接AC,
∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,
∴AB=BC,
∵,
∴△ABC是等边三角形,
∴AC=AB=1.
故选:B.
【点睛】
本题考点:菱形的性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、40°
【解析】
:在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°
14、
【解析】
【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.
【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,
由题意得:x+(2x+1.82)=50,
故答案为x+(2x+1.82)=50.
【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.
15、
【解析】
由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.
【详解】
∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,
∴∠EOB=∠FOC,
在△BOE和△COF中,,
∴△BOE≌△COF(ASA)
∴BE=FC=2,
同理BF=AE=3,
在Rt△BEF中,BF=3,BE=2,
∴EF==.
故答案为
【点睛】
本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.
16、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
【点睛】
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
17、6.
【解析】
先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE,从而可求出的周长.
【详解】
解:∵四边形是平行四边形,
∴BC=AD=5,
∵,
∴AC= ==4
∵沿折叠得到,
∴AF=AB=3,EF=BE,
∴的周长=CE+EF+FC=CE+BE+CF
=BC+AC-AF
=5+4-3=6
故答案为6.
【点睛】
本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.
18、
【解析】
分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.
详解:∵AB=4,BC=3,
∴AC=BD=5,
转动一次A的路线长是:
转动第二次的路线长是:
转动第三次的路线长是:
转动第四次的路线长是:0,
以此类推,每四次循环,
故顶点A转动四次经过的路线长为:
∵2017÷4=504…1,
∴顶点A转动四次经过的路线长为:
故答案为
点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1);(2).
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
【详解】
解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
故答案为:;
(2)画树状图为:
共有6种等可能的结果数,其中乙摸到白球的结果数为2,
所以乙摸到白球的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
20、 (1)①y=-x2-4x-3;y=x;②t= 或;(2)证明见解析.
【解析】
(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;②由题意得OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
得OH=HQ=t,可得Q(-t,-t),直线 PQ为y=-x-2t,过M作MG⊥x轴于G,由,则2PG=GH,由,得, 于是,解得,从而求出M(-3t,t)或M(),再分情况计算即可; (2) 过F作FH⊥x轴于H,想办法证得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得证.
【详解】
解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得解得
∴y=-x2-4x-3;
由AC=OA知C点坐标为(-3,-3),∴直线OC的解析式y=x;
②OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
∵QO=,∴OH=HQ=t,
∴Q(-t,-t),∴PQ:y=-x-2t,
过M作MG⊥x轴于G,
∴,
∴2PG=GH
∴,即,
∴ ,
∴,
∴M(-3t,t)或M()
当M(-3t,t)时:,
∴
当M()时:,
∴
综上:或
(2)设A(m,0)、B(n,0),
∴m、n为方程x2-bx-c=0的两根,
∴m+n=b,mn=-c,
∴y=-x2+(m+n)x-mn=-(x-m)(x-n),
∵E、F在抛物线上,设、,
设EF:y=kx+b,
∴ ,
∴
∴
∴,令x=m
∴
=
∴AC=,
又∵,
∴tan∠CAG=,
另一方面:过F作FH⊥x轴于H,
∴,,
∴tan∠FBH=
∴tan∠CAG=tan∠FBH
∴∠CAG=∠FBH
∴CG∥BF
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.
21、-1.
【解析】
根据分式的加法和除法可以化简题目中的式子,然后在、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.
【详解】
,
当时,原式.
故答案为:-1.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
22、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
【解析】
(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
【详解】
(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
解得:a=,b=1,c=﹣
∴抛物线解析式:y=x2+x﹣
(2)存在.
∵y=x2+x﹣=(x+1)2﹣2
∴P点坐标为(﹣1,﹣2)
∵△ABP的面积等于△ABE的面积,
∴点E到AB的距离等于2,
设E(a,2),
∴a2+a﹣=2
解得a1=﹣1﹣2,a2=﹣1+2
∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
(3)∵点A(﹣3,0),点B(1,0),
∴AB=4
若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
∴AB∥PF,AB=PF=4
∵点P坐标(﹣1,﹣2)
∴点F坐标为(3,﹣2),(﹣5,﹣2)
∴平行四边形的面积=4×2=1
若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
∴AB与PF互相平分
设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
∴ ,
∴x=﹣1,y=2
∴点F(﹣1,2)
∴平行四边形的面积=×4×4=1
综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
【点睛】
本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
23、﹣2,﹣1,0
【解析】
分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
本题解析:
,
解不等式①得,x≥−2,
解不等式②得,x<1,
∴不等式组的解集为−2≤x<1.
∴不等式组的最大整数解为x=0,
24、(1)证明见解析;(2);(3)证明见解析.
【解析】
(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.
(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.
(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.
【详解】
解:(1)证明:∵OA=OB,
∴∠OAB=∠OBA.
∵OA⊥CD,
∴∠OAB+∠AGC=90°.
又∵∠FGB=∠FBG,∠FGB=∠AGC,
∴∠FBG+∠OBA=90°,即∠OBF=90°.
∴OB⊥FB.
∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.
(2)∵AC∥BF,
∴∠ACF=∠F.
∵CD=a,OA⊥CD,
∴CE=CD=a.
∵tan∠F=,
∴,
即.
解得.
连接OC,设圆的半径为r,则,
在Rt△OCE中,,
即,
解得.
(3)证明:连接BD,
∵∠DBG=∠ACF,∠ACF=∠F(已证),
∴∠DBG=∠F.
又∵∠FGB=∠FGB,
∴△BDG∽△FBG.
∴,即GB2=DG•GF.
∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.
25、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
【解析】
(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
(3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
【详解】
(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
解得:a=﹣,b=,
故函数的表达式为y=﹣x2+x+2;
(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
解得:k=2,b=2,
故:直线BC的函数表达式为y=2x+2,
(3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
∴AE∥BC,而EP⊥BC,∴BP⊥AE
而BP=AE,∴线段BP与线段AE的关系是相互垂直;
②设点P的横坐标为m,
当P点在线段BC上时,
P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
直线MM′⊥BC,∴kMM′=﹣,
直线MM′的方程为:y=﹣x+(2+m),
则M′坐标为(0,2+m)或(4+m,0),
由题意得:PM′=PM=2m,
PM′2=42+m2=(2m)2,此式不成立,
或PM′2=m2+(2m+2)2=(2m)2,
解得:m=﹣4±2,
故点P的坐标为(﹣4±2,﹣8±4);
当P点在线段BE上时,
点P坐标为(m,﹣4),点M坐标为(m,2),
则PM=6,
直线MM′的方程不变,为y=﹣x+(2+m),
则M′坐标为(0,2+m)或(4+m,0),
PM′2=m2+(6+m)2=(2m)2,
解得:m=0,或﹣;
或PM′2=42+42=(6)2,无解;
故点P的坐标为(0,﹣4)或(﹣,﹣4);
综上所述:
点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
【点睛】
主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
26、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
【解析】
(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
【详解】
(1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
∴,解得:,
∴抛物线F的解析式为y=x1+x.
(1)将y=x+m代入y=x1+x,得:x1=m,
解得:x1=﹣,x1=,
∴y1=﹣+m,y1=+m,
∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
(3)∵m=,
∴点A的坐标为(﹣,),点B的坐标为(,1).
∵点A′是点A关于原点O的对称点,
∴点A′的坐标为(,﹣).
①△AA′B为等边三角形,理由如下:
∵A(﹣,),B(,1),A′(,﹣),
∴AA′=,AB=,A′B=,
∴AA′=AB=A′B,
∴△AA′B为等边三角形.
②∵△AA′B为等边三角形,
∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
(i)当A′B为对角线时,有,
解得,
∴点P的坐标为(1,);
(ii)当AB为对角线时,有,
解得:,
∴点P的坐标为(﹣,);
(iii)当AA′为对角线时,有,
解得:,
∴点P的坐标为(﹣,﹣1).
综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
【点睛】
本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
27、(1)
时,S最大为
(1)(-1,1)或或或(1,-1)
【解析】
试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.
(2)设出M点的坐标,利用S=S△AOM+S△OBM﹣S△AOB即可进行解答;
(1)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合,即可得出结论.
试题解析:解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a≠0),
将A(-1,0),B(0,-1),C(1,0)三点代入函数解析式得:
解得,所以此函数解析式为:.
(2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,),
∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,
当m=-时,S有最大值为:S=-.
(1)设P(x,).分两种情况讨论:
①当OB为边时,根据平行四边形的性质知PB∥OQ,
∴Q的横坐标的绝对值等于P的横坐标的绝对值,
又∵直线的解析式为y=-x,则Q(x,-x).
由PQ=OB,得:|-x-()|=1
解得: x=0(不合题意,舍去),-1, ,∴Q的坐标为(-1,1)或或;
②当BO为对角线时,如图,知A与P应该重合,OP=1.四边形PBQO为平行四边形则BQ=OP=1,Q横坐标为1,代入y=﹣x得出Q为(1,﹣1).
综上所述:Q的坐标为:(-1,1)或或或(1,-1).
点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
山东省济南市中考数学试卷(含解析版): 这是一份山东省济南市中考数学试卷(含解析版),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省济南市中考数学试卷(含解析): 这是一份2023年山东省济南市中考数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年山东省东阿县重点达标名校中考联考数学试卷含解析: 这是一份2022年山东省东阿县重点达标名校中考联考数学试卷含解析,共25页。试卷主要包含了下列命题中,真命题是等内容,欢迎下载使用。