- 2022年中考数学真题汇编:勾股定理(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:全等三角形2(含解析) 试卷 23 次下载
- 2022年中考数学真题分类汇编:图形的旋转(含答案) 试卷 20 次下载
- 2022年中考数学真题分类汇编:一次函数(含答案) 试卷 20 次下载
- 2022年中考数学真题汇编:分式方程(含解析) 试卷 19 次下载
2022年中考数学真题汇编:三角形(含解析)
展开2022年中考数学真题综合练习:三角形
一、选择题
1.(2022甘肃武威)若,,,则( )
A. B. C. D.
2.(2022海南)如图,直线,是等边三角形,顶点B在直线n上,直线m交于点E,交于点F,若,则的度数是( )
A. B. C. D.
3.(2022广东)如图,在中,,点D,E分别为,的中点,则( )
A. B. C. 1 D. 2
4.(2022海南)如图,在中,,以点B为圆心,适当长为半径画弧,交于点M,交于点N,分别以点M、N为圆心,大于的长为半径画弧,两弧在的内部相交于点P,画射线,交于点D,若,则的度数是( )
A. B. C. D.
5.(2022云南)如图,在ABC中,D、E分别为线段BC、BA的中点,设ABC的面积为S,EBD的面积为S.则=( )
A. B. C. D.
6.(2022福建)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )
A. 96 B. C. 192 D.
7.(2022云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOEFOE,你认为要添加的那个条件是( )
A. OD=OE B. OE=OF C. ∠ODE =∠OED D. ∠ODE=∠OFE
8.(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,,BC=44cm,则高AD约为( )(参考数据:,,)
A. 9.90cm B. 11.22cm C. 19.58cm D. 22.44cm
9.(2022百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如己知△ABC中,∠A=30°, AC=3,∠A所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为( )
A. B. C. 或 D. 或
10.(2022北部湾)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为,则高BC是( )
A. 米 B. 米 C. 米 D. 米
11.(2022贵港)如图,某数学兴趣小组测量一棵树高度,在点A处测得树顶C的仰角为,在点B处测得树顶C的仰角为,且A,B,D三点在同一直线上,若,则这棵树的高度是( )
A. B. C. D.
12.(2022安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为,,,.若,则线段OP长的最小值是( )
A. B. C. D.
13.(2022贵港)如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若的顶点均是格点,则的值是( )
A. B. C. D.
14.(2022北部湾)如图,在中,,将绕点A逆时针旋转,得到,连接并延长交AB于点D,当时,的长是( )
A. B. C. D.
二、填空题
15.(2022福建)如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为______.
16.(2022北京)如图,在中,平分若则____.
17.(2022甘肃武威)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为____________cm.
18.(2022海南)如图,正方形中,点E、F分别在边上,,则___________;若的面积等于1,则的值是___________.
19.(2022贵港)如图,将绕点A逆时针旋转角得到,点B的对应点D恰好落在边上,若,则旋转角的度数是______.
20.(2022百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.
21.(2022北部湾)如图,在正方形ABCD中,,对角线相交于点O.点E是对角线AC上一点,连接BE,过点E作,分别交于点F、G,连接BF,交AC于点H,将沿EF翻折,点H的对应点恰好落在BD上,得到若点F为CD的中点,则的周长是_________.
22.(2022安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:
(1)________°;
(2)若,,则________.
三、解答题
23.(2022安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
(1)将△ABC向上平移6个单位,再向右平移2个单位,得到,请画出﹔
(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到,请画出.
24.(2022广东)如图,已知,点P在上,,,垂足分别为D,E.求证:.
25.(2022福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.
26.(2022百色)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中 AB=CD=2米,AD=BC=3米,∠B=
(1)求证:△ABC≌△CDA ;
(2)求草坪造型的面积.
27.(2022北部湾)如图,在中,BD是它的一条对角线,
(1)求证:;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若,求的度数.
28.(2022北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.
三角形内角和定理:三角形三个内角和等于180°,
已知:如图,,
求证:
方法一
证明:如图,过点A作
方法二
证明:如图,过点C作
29.(2022安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:,,.
30.(2022海南)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼楼顶D处的俯角为,测得楼楼顶A处的俯角为.已知楼和楼之间的距离为100米,楼的高度为10米,从楼的A处测得楼的D处的仰角为(点A、B、C、D、P在同一平面内).
(1)填空:___________度,___________度;
(2)求楼的高度(结果保留根号);
(3)求此时无人机距离地面的高度.
31.(2022甘肃武威)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:
方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).
数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.
问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).
参考数据:sin266°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.
根据上述方案及数据,请你完成求解过程.
32.(2022云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°
(1)求证:四边形ABDF是矩形;
(2)若AD=5,DF=3,求四边形ABCF的面积S.
33.(2022福建)已知,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.
34.(2022安徽)已知四边形ABCD中,BC=CD.连接BD,过点C作BD的垂线交AB于点E,连接DE.
(1)如图1,若,求证:四边形BCDE是菱形;
(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
(ⅰ)求∠CED的大小;
(ⅱ)若AF=AE,求证:BE=CF.
35.(2022北部湾)已知,点A,B分别在射线上运动,.
(1)如图①,若,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为,连接.判断OD与有什么数量关系?证明你的结论:
(2)如图②,若,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:
(3)如图③,若,当点A,B运动到什么位置时,的面积最大?请说明理由,并求出面积的最大值.
36.(2022贵港)已知:点C,D均在直线l的上方,与都是直线l的垂线段,且在的右侧,,与相交于点O.
(1)如图1,若连接,则的形状为______,的值为______;
(2)若将沿直线l平移,并以为一边在直线l的上方作等边.
①如图2,当与重合时,连接,若,求的长;
②如图3,当时,连接并延长交直线l于点F,连接.求证:.
37.(2022北京)在中,,D为内一点,连接,延长到点,使得
(1)如图1,延长到点,使得,连接,若,求证:;
(2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.
38.(2022甘肃武威)已知正方形,为对角线上一点.
(1)【建立模型】如图1,连接,.求证:;
(2)【模型应用】如图2,是延长线上一点,,交于点.
①判断的形状并说明理由;
②若为的中点,且,求的长.
(3)【模型迁移】如图3,是延长线上一点,,交于点,.求证:.
39.(2022海南)如图1,矩形中,,点P在边上,且不与点B、C重合,直线与的延长线交于点E.
(1)当点P是的中点时,求证:;
(2)将沿直线折叠得到,点落在矩形的内部,延长交直线于点F.
①证明,并求出在(1)条件下的值;
②连接,求周长的最小值;
③如图2,交于点H,点G是的中点,当时,请判断与的数量关系,并说明理由.
2022年中考数学真题综合练习:三角形参考答案
一、选择题
1.(2022甘肃武威)若,,,则( )
A. B. C. D.
【答案】解:∵
∴
,,
故选D
2.(2022海南)如图,直线,是等边三角形,顶点B在直线n上,直线m交于点E,交于点F,若,则的度数是( )
A. B. C. D.
【答案】解:∵是等边三角形,
∴∠A=60°,
∵∠1=140°,
∴∠AEF=∠1-∠A=80°,
∴∠BEF=180°-∠AEF=100°,
∵,
∴∠2=∠BEF=100°.
故选:B
3.(2022广东)如图,在中,,点D,E分别为,的中点,则( )
A. B. C. 1 D. 2
【答案】∵D、E分比为AB、AC的中点,
∴DE为△ABC的中位线,
∴,
∵BC=4,
∴DE=2,
故选:D.
4.(2022海南)如图,在中,,以点B为圆心,适当长为半径画弧,交于点M,交于点N,分别以点M、N为圆心,大于的长为半径画弧,两弧在的内部相交于点P,画射线,交于点D,若,则的度数是( )
A. B. C. D.
【答案】由作法得BD平分∠ABC,
∴
设
∴
∵
∴
∵
∴
∵
∴,解得
∴
故选:A
5.(2022云南)如图,在ABC中,D、E分别为线段BC、BA的中点,设ABC的面积为S,EBD的面积为S.则=( )
A. B. C. D.
【答案】解:∵D、E分别为线段BC、BA的中点,
∴,
又∵,
∴,相似比为,
∴,
故选:B.
6.(2022福建)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )
A. 96 B. C. 192 D.
【答案】解:依题意为平行四边形,
∵,,AB=8,.
∴平行四边形的面积=
故选B
7.(2022云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOEFOE,你认为要添加的那个条件是( )
A. OD=OE B. OE=OF C. ∠ODE =∠OED D. ∠ODE=∠OFE
【答案】解:∵OB平分∠AOC
∴∠AOB=∠BOC
当△DOE≌△FOE时,可得以下结论:
OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.
A答案中OD与OE不是△DOE≌△FOE的对应边,A不正确;
B答案中OE与OF不是△DOE≌△FOE的对应边,B不正确;
C答案中,∠ODE与∠OED不是△DOE≌△FOE的对应角,C不正确;
D答案中,若∠ODE=∠OFE,
在△DOE和△FOE中,
∴△DOE≌△FOE(AAS)
∴D答案正确.
故选:D.
8.(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,,BC=44cm,则高AD约为( )(参考数据:,,)
A. 9.90cm B. 11.22cm C. 19.58cm D. 22.44cm
【答案】解:∵等腰三角形ABC,AB=AC,AD为BC边上的高,
∴,
∵BC=44cm,
∴cm.
∵等腰三角形ABC,AB=AC,,
∴.
∵AD为BC边上的高,,
∴在中,
,
∵,cm,
∴cm.
故选:B.
9.(2022百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如己知△ABC中,∠A=30°, AC=3,∠A所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为( )
A. B. C. 或 D. 或
【答案】如图,当△ABC是一个直角三角形时,即,
,
;
如图,当△AB1C是一个钝角三角形时,
过点C作CD⊥AB1,
,
,
,
,
,
,
,
,
,
综上,满足已知条件的三角形的第三边长为或,
故选:C.
10.(2022北部湾)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为,则高BC是( )
A. 米 B. 米 C. 米 D. 米
【答案】解:在Rt△ACB中,∠ACB=90°,
∴sinα=,
∴BC= sinαAB=12 sinα(米),
故选:A.
11.(2022贵港)如图,某数学兴趣小组测量一棵树高度,在点A处测得树顶C的仰角为,在点B处测得树顶C的仰角为,且A,B,D三点在同一直线上,若,则这棵树的高度是( )
A. B. C. D.
【答案】设CD=x,在Rt△ADC中,∠A=45°,
∴CD=AD=x,
∴BD=16-x,
在Rt△BCD中,∠B=60°,
∴,
即:,
解得,
故选A.
12.(2022安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为,,,.若,则线段OP长的最小值是( )
A. B. C. D.
【答案】解:如图,
,,
∴
=
=
=
==,
∴,
设△ABC中AB边上的高为,△PAB中AB边上的高为,
则,
,
∴,
∴,
∵△ABC是等边三角形,
∴,
,
∴点P在平行于AB,且到AB的距离等于的直线上,
∴当点P在CO的延长线上时,OP取得最小值,
过O作OE⊥BC于E,
∴,
∵O是等边△ABC的中心,OE⊥BC
∴∠OCE=30°,CE=
∴OC=2OE
∵,
∴,
解得OE=,
∴OC=,
∴OP=CP-OC=.
故选B.
13.(2022贵港)如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若的顶点均是格点,则的值是( )
A. B. C. D.
【答案】解:过点C作AB的垂线交AB于一点D,如图所示,
∵每个小正方形的边长为1,
∴,
设,则,
在中,,
在中,,
∴,
解得,
∴,
故选:C.
14.(2022北部湾)如图,在中,,将绕点A逆时针旋转,得到,连接并延长交AB于点D,当时,的长是( )
A. B. C. D.
【答案】解:,
,
是绕点A逆时针旋转得到,
,,
在中,,
,
,
,
,
,
,
的长=,
故选:B.
二、填空题
15.(2022福建)如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为______.
【答案】∵D,E分别是AB,AC的中点,
∴DE是△ABC的中位线,
又BC=12,
∴,
故答案:6.
16.(2022北京)如图,在中,平分若则____.
【答案】解:如图,作于点F,
∵平分,,,
∴,
∴.
故答案为:1.
17.(2022甘肃武威)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为____________cm.
【答案】解:∵四边形ABCD是矩形,
∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,
∴∠ABD=∠BDC,
∵AE=2cm,
∴BE=AB-AE=6-2=4(cm),
∵G是EF的中点,
∴EG=BG=EF,
∴∠BEG=∠ABD,
∴∠BEG=∠BDC,
∴△EBF∽△DCB,
∴,
∴,
∴BF=6,
∴EF=(cm),
∴BG=EF=(cm),
故答案为:.
18.(2022海南)如图,正方形中,点E、F分别在边上,,则___________;若的面积等于1,则的值是___________.
【答案】∵正方形
∴,
∵
∴(HL)
∴,
∵,
∴
∴
设
∴
∴
∵的面积等于1
∴,解得,(舍去)
∴
故答案为:60;.
19.(2022贵港)如图,将绕点A逆时针旋转角得到,点B的对应点D恰好落在边上,若,则旋转角的度数是______.
【答案】解:根据题意,
∵,
∴,
由旋转的性质,则,,
∴,
∴;
∴旋转角的度数是50°;
故答案为:50°.
20.(2022百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.
【答案】解:设旗杆为AB,如图所示:
根据题意得:,
∴
∵米,米,米,
∴
解得:AB=12米.
故答案:12.
21.(2022北部湾)如图,在正方形ABCD中,,对角线相交于点O.点E是对角线AC上一点,连接BE,过点E作,分别交于点F、G,连接BF,交AC于点H,将沿EF翻折,点H的对应点恰好落在BD上,得到若点F为CD的中点,则的周长是_________.
【答案】解:过点E作PQAD交AB于点P,交DC于点Q,
∵ADPQ,
∴AP=DQ,,
∴BP=CQ,
∵,
∴BP=CQ=EQ,
∵EF⊥BE,
∴
∵
∴,
在与中
∴≌,
∴BE=EF,
又∵,F为中点,
∴,
∴,
∴,
又∵,
∴,
∴AE=AO-EO=4-2=2,
∵ABFC,
∴,
∴,
∴,
∵,
∴,
,
∴EH=AH-AE=,
∵,
,
∴,
又∵,
∴
∴,
,
∴EG=,OG=1,
过点F作FM⊥AC 于点M,
∴FM=MC==,
∴MH=CH-MC=,
作FN⊥OD于点N,
,
在Rt与Rt中
∴Rt≌Rt
∴,
∴ON=2,NG=1,
∴,
∴,
故答案为:.
22.(2022安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:
(1)________°;
(2)若,,则________.
【答案】(1)∵四边形ABCD是正方形,
∴∠A=90°,AB=AD,
∴∠ABE+∠AEB=90°,
∵FG⊥AG,
∴∠G=∠A=90°,
∵△BEF是等腰直角三角形,
∴BE=FE,∠BEF=90°,
∴∠AEB+∠FEG=90°,
∴∠FEG=∠EBA,
在△ABE和△GEF中,
,
∴△ABE≌△GEF(AAS),
∴AE=FG,AB=GE,
在正方形ABCD中,AB=AD
∵AD=AE+DE,EG=DE+DG,
∴AE=DG=FG,
∴∠FDG=∠DFG=45°.
故填:45°.
(2)如图,作FH⊥CD于H,
∴∠FHD=90°
∴四边形DGFH是正方形,
∴DH=FH=DG=2,
∴AGFH,
∴,
∴DM=,MH=,
作MP⊥DF于P,
∵∠MDP=∠DMP=45°,
∴DP=MP,
∵DP2+MP2=DM2,
∴DP=MP=,
∴PF=
∵∠MFP+∠MFH=∠MFH+∠NFH=45°,
∴∠MFP=∠NFH,
∵∠MPF=∠NHF=90°,
∴△MPF∽△NHF,
∴,即,
∴NH=,
∴MN=MH+NH=+=.
故填: .
三、解答题
23.(2022安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
(1)将△ABC向上平移6个单位,再向右平移2个单位,得到,请画出﹔
(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到,请画出.
【答案】(1)见解析 (2)见解析
【解析】
【分析】(1)根据平移的方式确定出点A1,B1,C1的位置,再顺次连接即可得到;
(2)根据旋转可得出确定出点A2,B2,C2的位置,再顺次连接即可得到.
(1)如图,即为所作;
(2)如图,即为所作;
24.(2022广东)如图,已知,点P在上,,,垂足分别为D,E.求证:.
【答案】证明:∵,
∴为的角平分线,
又∵点P在上,,,
∴,,
又∵(公共边),
∴.
25.(2022福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.
【答案】证明:∵BF=EC,
∴,即BC=EF.
在△ABC和△DEF中,
,
∴,
∴∠A=∠D.
26.(2022百色)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中 AB=CD=2米,AD=BC=3米,∠B=
(1)求证:△ABC≌△CDA ;
(2)求草坪造型的面积.
【答案】
(1)在和中,
,
;
(2)
过点A作AE⊥BC于点E,
,
,
,
,
,
,
,
草坪造型的面积,
所以,草坪造型的面积为.
27.(2022北部湾)如图,在中,BD是它的一条对角线,
(1)求证:;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若,求的度数.
【答案】
(1)四边形ABCD是平行四边形,
,
,
(2)如图,EF即为所求;
(3) BD的垂直平分线为EF,
,
,
,
,
.
28.(2022北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.
三角形内角和定理:三角形三个内角和等于180°,
已知:如图,,
求证:
方法一
证明:如图,过点A作
方法二
证明:如图,过点C作
【答案】证明:过点作,
则,. 两直线平行,内错角相等)
点,,在同一条直线上,
.(平角的定义)
.
即三角形的内角和为.
29.(2022安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:,,.
【答案】解:∵A,B均在C的北偏东37°方向上,A在D的正北方向,且点D在点C的正东方,
∴是直角三角形,
∴,
∴∴∠A=90°-∠BCD=90°-53°=37°,
在Rt△ACD中,,CD=90米,
∴米,
∵,
∴
∴,
∴ 即是直角三角形,
∴,
∴米,
∴米,
答:A,B两点间的距离为96米.
30.(2022海南)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼楼顶D处的俯角为,测得楼楼顶A处的俯角为.已知楼和楼之间的距离为100米,楼的高度为10米,从楼的A处测得楼的D处的仰角为(点A、B、C、D、P在同一平面内).
(1)填空:___________度,___________度;
(2)求楼的高度(结果保留根号);
(3)求此时无人机距离地面的高度.
【答案】
(1)过点A作于点E,
由题意得:
∴
(2)由题意得:米,.
在中,,
∴,
∴
∴楼的高度为米.
(3)作于点G,交于点F,
则
∵,
∴.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
∴.
∴(AAS).
∴.
∴
∴无人机距离地面的高度为110米.
31.(2022甘肃武威)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:
方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).
数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.
问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).
参考数据:sin266°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.
根据上述方案及数据,请你完成求解过程.
【答案】解:设BF=x m,
由题意得:
DE=FG=1.5m,
在Rt△CBF中,∠CBF=35°,
∴CF=BF•tan35°≈0.7x(m),
∵AB=8.8m,
∴AF=AB+BF=(8.8+x)m,
在Rt△ACF中,∠CAF=26.6°,
∴tan26.6°= ≈0.5,
∴x=22,
经检验:x=22是原方程的根,
∴CG=CF+FG=0.7x+1.5=16.9(m),
∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.
32.(2022云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°
(1)求证:四边形ABDF是矩形;
(2)若AD=5,DF=3,求四边形ABCF的面积S.
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,即AB∥CF,
∴∠BAE=∠FDE,
∵E为线段AD的中点,
∴AE=DE,
又∵∠AEB=∠DEF,
∴≌(ASA),
∴AB=DF,
又∵AB∥DF,
∴四边形ABDF是平行四边形,
∵∠BDF=90°,
∴四边形ABDF是矩形;
(2)解:由(1)知,四边形ABDF是矩形,
∴AB=DF=3,∠AFD=90°,
∴在中,,
∵四边形ABCD是平行四边形,
∴AB=CD=3,
∴CF=CD+DF=3+3=6,
∴.
33.(2022福建)已知,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.
【答案】
(1)∵,
∴AC=DC,
∵AB=AC,
∴∠ABC=∠ACB,AB=DC,
∵CB平分∠ACD,
∴,
∴,
∴,
∴四边形ABDC是平行四边形,
又∵AB=AC,
∴四边形ABDC是菱形;
(2)结论:.
证明:∵,
∴,
∵AB=AC,
∴,
∴,
∵,
∴,
∵,
∴,
∴;
(3)在AD上取一点M,使得AM=CB,连接BM,
∵AB=CD,,
∴,
∴BM=BD,,
∴,
∵,
∴,
设,,则,
∵CA=CD,
∴,
∴,
∴,
∴,
∵,
∴,
∴,即∠ADB=30°.
34.(2022安徽)已知四边形ABCD中,BC=CD.连接BD,过点C作BD的垂线交AB于点E,连接DE.
(1)如图1,若,求证:四边形BCDE是菱形;
(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
(ⅰ)求∠CED的大小;
(ⅱ)若AF=AE,求证:BE=CF.
【答案】
(1)证明:∵DC=BC,CE⊥BD,
∴DO=BO,
∵,
∴,,
∴(AAS),
∴,
∴四边形BCDE为平行四边形,
∵CE⊥BD,
∴四边形BCDE为菱形.
(2)根据解析(1)可知,BO=DO,
∴CE垂直平分BD,
∴BE=DE,
∵BO=DO,
∴∠BEO=∠DEO,
∵DE垂直平分AC,
∴AE=CE,
∵EG⊥AC,
∴∠AEG=∠DEO,
∴∠AEG=∠DEO=∠BEO,
∵∠AEG+∠DEO+∠BEO=180°,
∴.
(ⅱ)连接EF,
∵EG⊥AC,
∴,
∴,
∵
∵AE=AF,
∴,
∴,
,
∴,
∵,
∴,
∴,
∴,
∴,
,
∴,
,
,
,
∴,
,
∴(AAS),
.
35.(2022北部湾)已知,点A,B分别在射线上运动,.
(1)如图①,若,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为,连接.判断OD与有什么数量关系?证明你的结论:
(2)如图②,若,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:
(3)如图③,若,当点A,B运动到什么位置时,的面积最大?请说明理由,并求出面积的最大值.
【答案】
(1),证明如下:
,AB中点为D,
,
为的中点,,
,
,
;
(2)如图,取AB中点T,连接OT、CT、OC,
以AB为斜边在其右侧作等腰直角三角形ABC,
,
(当且仅当点T在线段OC上时,等号成立),
当O、T、C在同一直线上时,CO最大,
在和中,
,
,
,
,即,
,
,
;
(3)如图,当点A,B运动到时,的面积最大,证明如下:
以AB为斜边在其右侧作等腰直角三角形ABC,连接OC交AB于点T,在OT上取点E,使OE=BE,连接BE,
由(2)可知,当时,OC最大,,
当时,,
此时OT最大,
的面积最大,
,
,
,
综上,当点A,B运动到时,的面积最大,面积的最大值为.
36.(2022贵港)已知:点C,D均在直线l的上方,与都是直线l的垂线段,且在的右侧,,与相交于点O.
(1)如图1,若连接,则的形状为______,的值为______;
(2)若将沿直线l平移,并以为一边在直线l的上方作等边.
①如图2,当与重合时,连接,若,求的长;
②如图3,当时,连接并延长交直线l于点F,连接.求证:.
【答案】
(1)解:过点C作CH⊥BD于H,如图所示:
∵AC⊥l,DB⊥l,CH⊥BD,
∴∠CAB=∠ABD=∠CHB=90°,
∴四边形ABHC是矩形,
∴AC=BH,
又∵BD=2AC,
∴AC=BH=DH,且CH⊥BD,
∴的形状为等腰三角形,
∵AC、BD都垂直于l,
∴△AOC∽△BOD,
,即,
,
故答案为:等腰三角形,.
(2)①过点E作于点H,如图所示:
∵AC,BD均是直线l的垂线段,
∴,
∵是等边三角形,且与重合,
∴∠EAD=60°,
∴,
∴,
∴在中,,,
又∵,,
∴,
∴,
又,
∴,
又由(1)知,
∴,则,
∴在中,由勾股定理得:.
②连接,如图3所示:
∵,
∴,
∵是等腰三角形,
∴是等边三角形,
又∵是等边三角形,
∴绕点D顺时针旋转后与重合,
∴,
又∵,
∴,
∴,
∴,
又,
∴,
∴,
∴.
37.(2022北京)在中,,D为内一点,连接,延长到点,使得
(1)如图1,延长到点,使得,连接,若,求证:;
(2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.
【答案】
(1)证明:在和中,
,
∴ ,
∴ ,
∴ ,
∵,
∴.
(2)解:补全后的图形如图所示,,证明如下:
延长BC到点M,使CM=CB,连接EM,AM,
∵,CM=CB,
∴ 垂直平分BM,
∴,
在和中,
,
∴ ,
∴ ,,
∵,
∴ ,
∴ ,
∵,
∴ ,
∴ ,即,
∵,
∴ ,
∴ .
38.(2022甘肃武威)已知正方形,为对角线上一点.
(1)【建立模型】如图1,连接,.求证:;
(2)【模型应用】如图2,是延长线上一点,,交于点.
①判断的形状并说明理由;
②若为的中点,且,求的长.
(3)【模型迁移】如图3,是延长线上一点,,交于点,.求证:.
【答案】
(1))证明:∵四边形为正方形,为对角线,
∴,.
∵,
∴,
∴.
(2)①为等腰三角形.理由如下:
∵四边形为正方形,
∴,
∴.
∵,
∴,
由(1)得,
∴,
又∵,
∴,
∴为等腰三角形.
②如图1,过点作,垂足为.
∵四边形为正方形,点为的中点,,
∴,.
由①知,
∴,
∴.
在与中,
∵,
∴,
∴,
∴.
在中,.
(3)如图2,∵,
∴.
在中,,
∴.
由(1)得,
由(2)得,
∴.
39.(2022海南)如图1,矩形中,,点P在边上,且不与点B、C重合,直线与的延长线交于点E.
(1)当点P是的中点时,求证:;
(2)将沿直线折叠得到,点落在矩形的内部,延长交直线于点F.
①证明,并求出在(1)条件下的值;
②连接,求周长的最小值;
③如图2,交于点H,点G是的中点,当时,请判断与的数量关系,并说明理由.
【答案】
(1)解:如图9-1,在矩形中,,
即,
∴.
∵点P是的中点,
∴.
∴.
(2)①证明:如图9-2,在矩形中,,
∴.
由折叠可知,
∴.
∴.
在矩形中,,
∵点P是的中点,
∴.
由折叠可知,.
设,则.
∴.
在中,由勾股定理得,
∴,
∴,
即.
②解:如图9-3,由折叠可知,.
∴.
由两点之间线段最短可知,
当点恰好位于对角线上时,最小.
连接,在中,,
∴,
∴,
∴.
③解:与的数量关系是.
理由是:如图9-4,由折叠可知.
过点作,交于点M,
∵,
∴,
∴.
∴,
∴点H是中点.
∵,即,
∴.
∵,
∴.
∴.
∴.
∵点G为中点,点H是中点,
∴.
∴.
∴.
∴.
2023年全国各地中考数学真题分类汇编之三角形及全等三角形(含解析): 这是一份2023年全国各地中考数学真题分类汇编之三角形及全等三角形(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年中考数学真题分项汇编专题15 相似三角形(含解析): 这是一份2022年中考数学真题分项汇编专题15 相似三角形(含解析),共60页。试卷主要包含了这体现了数学中的黄金分割等内容,欢迎下载使用。
2022年中考数学真题汇编:全等三角形2(含解析): 这是一份2022年中考数学真题汇编:全等三角形2(含解析),共78页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。