新高考数学二轮专题《圆锥曲线》第11讲 阿基米德三角形问题(2份打包,解析版+原卷版)
展开
这是一份新高考数学二轮专题《圆锥曲线》第11讲 阿基米德三角形问题(2份打包,解析版+原卷版),文件包含新高考数学二轮专题《圆锥曲线》第11讲阿基米德三角形问题解析版doc、新高考数学二轮专题《圆锥曲线》第11讲阿基米德三角形问题原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
第11讲 阿基米德三角形问题一、解答题 1.设定点F(0,1),动点E满足:以EF为直径的圆与x轴相切.(1)求动点E的轨迹C的方程;(2)设A,B是曲线C上的两点,若曲线C在A,B处的切线互相垂直,求证:A,F,B三点共线.2.如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N .(Ⅰ)求的值;(Ⅱ)记直线MN的斜率为,直线AB的斜率为证明:为定值3.已知抛物线C:x2=2py(p>0),直线l交C于A,B两点,且A,B两点与原点不重合,点M(1,2)为线段AB的中点.(1)若直线l的斜率为1,求抛物线C的方程;(2)分别过A,B两点作抛物线C的切线,若两条切线交于点S,证明点S在一条定直线上.4.已知抛物线C:x2=2py(p>0),F为抛物线C的焦点.以F为圆心,p为半径作圆,与抛物线C在第一象限交点的横坐标为2.(1)求抛物线C的方程;(2)直线y=kx+1与抛物线C交于A,B两点,过A,B分别作抛物线C的切线l1,l2,设切线l1,l2的交点为P,求证:△PAB为直角三角形.5.已知抛物线的焦点为,过点的直线分别交抛物线于两点.(1)若以为直径的圆的方程为,求抛物线的标准方程;(2)过点分别作抛物线的切线,证明:的交点在定直线上.6.已知动点在轴上方,且到定点距离比到轴的距离大.(1)求动点的轨迹的方程;(2)过点的直线与曲线交于,两点,点,分别异于原点,在曲线的,两点处的切线分别为,,且与交于点,求证:在定直线上.7.已知圆C:x2+y2+2x-2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线E于A,B两点,且满足OA⊥OB.①求证直线l过定点;②设点M为圆C上任意一动点,求当动点M到直线l的距离最大时直线l的方程.8.已知抛物线的焦点为,,是抛物线上的两个动点,且,过,两点分别作抛物线的切线,设其交点为.(1)若直线与,轴分别交于点,,且的面积为,求的值;(2)记的面积为,求的最小值,并指出最小时对应的点的坐标.9.已知以动点为圆心的与直线:相切,与定圆:相外切.(Ⅰ)求动圆圆心的轨迹方程;(Ⅱ)过曲线上位于轴两侧的点、(不与轴垂直)分别作直线的垂线,垂足记为、,直线交轴于点,记、、的面积分别为、、,且,证明:直线过定点.10.已知点是抛物线的顶点,,是上的两个动点,且.(1)判断点是否在直线上?说明理由;(2)设点是△的外接圆的圆心,点到轴的距离为,点,求的最大值.11.已知点是抛物线的顶点,,是上的两个动点,且.(1)判断点是否在直线上?说明理由;(2)设点是△的外接圆的圆心,求点的轨迹方程.12.抛物线的焦点为,过且垂直于轴的直线交抛物线于两点,为原点,的面积为2.(1)求拋物线的方程.(2)为直线上一个动点,过点作拋物线的切线,切点分别为,过点作的垂线,垂足为,是否存在实数,使点在直线上移动时,垂足恒为定点?若不存在,说明理由;若存在,求出的值,并求定点的坐标.13.已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.14.如图,设抛物线的焦点为F,抛物线上的点A到y轴的距离等于|AF|–1.(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.15.如图,已知点是轴左侧(不含轴)一点,抛物线上存在不同的两点、,满足、的中点均在抛物线上.(1)求抛物线的焦点到准线的距离;(2)设中点为,且,,证明:;(3)若是曲线()上的动点,求面积的最小值.16.设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明∠PFA=∠PFB.17.如下图,设抛物线方程为,M为直线上任意一点,过引抛物线的切线,切点分别为,.(Ⅰ)设线段的中点为;(ⅰ)求证:平行于轴;(ⅱ)已知当点的坐标为时,,求此时抛物线的方程;(Ⅱ)是否存在点,使得点关于直线的对称点在抛物线上,其中,点满足(为坐标原点).若存在,求出所有适合题意的点的坐标;若不存在,请说明理由.
相关试卷
这是一份新高考数学二轮专题《圆锥曲线》第25讲 蝴蝶问题(2份打包,解析版+原卷版),文件包含新高考数学二轮专题《圆锥曲线》第25讲蝴蝶问题解析版doc、新高考数学二轮专题《圆锥曲线》第25讲蝴蝶问题原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份新高考数学二轮专题《圆锥曲线》第24讲 直径问题(2份打包,解析版+原卷版),文件包含新高考数学二轮专题《圆锥曲线》第24讲直径问题解析版doc、新高考数学二轮专题《圆锥曲线》第24讲直径问题原卷版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份新高考数学二轮专题《圆锥曲线》第22讲 等角问题(2份打包,解析版+原卷版),文件包含新高考数学二轮专题《圆锥曲线》第22讲等角问题解析版doc、新高考数学二轮专题《圆锥曲线》第22讲等角问题原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。