终身会员
搜索
    上传资料 赚现金

    2017-2021年广东中考数学真题分类汇编之方程与不等式

    立即下载
    加入资料篮
    2017-2021年广东中考数学真题分类汇编之方程与不等式第1页
    2017-2021年广东中考数学真题分类汇编之方程与不等式第2页
    2017-2021年广东中考数学真题分类汇编之方程与不等式第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2017-2021年广东中考数学真题分类汇编之方程与不等式

    展开

    这是一份2017-2021年广东中考数学真题分类汇编之方程与不等式,共21页。


    2017-2021年广东中考数学真题分类汇编之方程与不等式
    一.选择题(共11小题)
    1.(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是(  )
    A.m< B.m≤ C.m> D.m≥
    2.(2021•广州)方程=的解为(  )
    A.x=﹣6 B.x=﹣2 C.x=2 D.x=6
    3.(2021•深圳)《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是(  )
    A.
    B.
    C.
    D.
    4.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是(  )
    A.x=4 B.x=5 C.x=6 D.x=7
    5.(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是(  )
    A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=2
    6.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是(  )
    A. B.
    C. D.
    7.(2018•广东)不等式3x﹣1≥x+3的解集是(  )
    A.x≤4 B.x≥4 C.x≤2 D.x≥2
    8.(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程(  )
    A.10%x=330 B.(1﹣10%)x=330
    C.(1﹣10%)2x=330 D.(1+10%)x=330
    9.(2021•深圳)不等式x+1>2的解集在数轴上表示为(  )
    A. B.
    C. D.
    10.(2020•广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是(  )
    A.0个 B.1个 C.2个 D.1个或2个
    11.(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是(  )
    A.= B.=
    C.= D.=
    二.填空题(共6小题)
    12.(2021•广州)方程x2﹣4x=0的实数解是    .
    13.(2021•深圳)已知方程x2+mx﹣3=0的一个根是1,则m的值为    .
    14.(2020•广州)方程=的解是   .
    15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为    .
    16.(2021•广东)二元一次方程组的解为    .
    17.(2018•广州)方程=的解是   .
    三.解答题(共3小题)
    18.(2021•广东)解不等式组.
    19.(2021•广州)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.
    (1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;
    (2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?
    20.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
    (1)计划到2020年底,全省5G基站的数量是多少万座?
    (2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.

    2017-2021年广东中考数学真题分类汇编之方程与不等式
    参考答案与试题解析
    一.选择题(共11小题)
    1.(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是(  )
    A.m< B.m≤ C.m> D.m≥
    【考点】根的判别式. 版权所有
    【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
    【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
    ∴Δ=b2﹣4ac=(﹣3)2﹣4×1×m>0,
    ∴m<.
    故选:A.
    【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.
    2.(2021•广州)方程=的解为(  )
    A.x=﹣6 B.x=﹣2 C.x=2 D.x=6
    【考点】解分式方程. 版权所有
    【专题】计算题;分式方程及应用;运算能力.
    【分析】求解分式方程,根据方程的解得结论.
    【解答】解:去分母,得x=2x﹣6,
    ∴x=6.
    经检验,x=6是原方程的解.
    故选:D.
    【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.
    3.(2021•深圳)《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是(  )
    A.
    B.
    C.
    D.
    【考点】由实际问题抽象出二元一次方程组. 版权所有
    【专题】一次方程(组)及应用;应用意识.
    【分析】设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.
    【解答】解:设他买了x亩好田,y亩坏田,
    ∵共买好、坏田1顷(1顷=100亩).
    ∴x+y=100;
    ∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,
    ∴300x+y=10000.
    联立两方程组成方程组得:.
    故选:B.
    【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
    4.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是(  )
    A.x=4 B.x=5 C.x=6 D.x=7
    【考点】分式方程的解. 版权所有
    【专题】新定义.
    【分析】所求方程利用题中的新定义化简,求出解即可.
    【解答】解:根据题意,得=﹣1,
    去分母得:1=2﹣(x﹣4),
    解得:x=5,
    经检验x=5是分式方程的解.
    故选:B.
    【点评】此题考查了解分式方程,弄清题中的新定义是解本题的关键.
    5.(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是(  )
    A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=2
    【考点】根与系数的关系. 版权所有
    【专题】一元二次方程及应用.
    【分析】由根的判别式Δ=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.
    【解答】解:∵Δ=(﹣2)2﹣4×1×0=4>0,
    ∴x1≠x2,选项A不符合题意;
    ∵x1是一元二次方程x2﹣2x=0的实数根,
    ∴x12﹣2x1=0,选项B不符合题意;
    ∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,
    ∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.
    故选:D.
    【点评】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.
    6.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是(  )
    A. B.
    C. D.
    【考点】由实际问题抽象出二元一次方程组. 版权所有
    【专题】常规题型.
    【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.
    【解答】解:设大房间有x个,小房间有y个,由题意得:

    故选:A.
    【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.
    7.(2018•广东)不等式3x﹣1≥x+3的解集是(  )
    A.x≤4 B.x≥4 C.x≤2 D.x≥2
    【考点】解一元一次不等式. 版权所有
    【专题】计算题;一元一次不等式(组)及应用.
    【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.
    【解答】解:移项,得:3x﹣x≥3+1,
    合并同类项,得:2x≥4,
    系数化为1,得:x≥2,
    故选:D.
    【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.
    8.(2017•深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程(  )
    A.10%x=330 B.(1﹣10%)x=330
    C.(1﹣10%)2x=330 D.(1+10%)x=330
    【考点】由实际问题抽象出一元一次方程. 版权所有
    【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.
    【解答】解:设上个月卖出x双,根据题意得
    (1+10%)x=330.
    故选:D.
    【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.
    9.(2021•深圳)不等式x+1>2的解集在数轴上表示为(  )
    A. B.
    C. D.
    【考点】解一元一次不等式;在数轴上表示不等式的解集. 版权所有
    【专题】一元一次不等式(组)及应用;几何直观;运算能力.
    【分析】先移项、合并同类项解出不等式的解集,再在数轴上表示出来即可.
    【解答】解:因为x+1>2,
    所以x>1,
    在数轴上表示为:

    故选:D.
    【点评】此题考查一元一次不等式的解法及在数轴上表示不等式的解集,关键是解出不等式的解集.
    10.(2020•广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是(  )
    A.0个 B.1个 C.2个 D.1个或2个
    【考点】根的判别式;一次函数的性质. 版权所有
    【专题】一元二次方程及应用;运算能力;推理能力.
    【分析】利用一次函数的性质得到a≤0,再判断Δ=22﹣4a>0,从而得到方程根的情况.
    【解答】解:∵直线y=x+a不经过第二象限,
    ∴a≤0,
    当a=0时,关于x的方程ax2+2x+1=0是一元一次方程,解为x=﹣,
    当a<0时,关于x的方程ax2+2x+1=0是一元二次方程,
    ∵Δ=22﹣4a>0,
    ∴方程有两个不相等的实数根.
    故选:D.
    【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一次函数的性质.
    11.(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是(  )
    A.= B.=
    C.= D.=
    【考点】由实际问题抽象出分式方程. 版权所有
    【专题】分式方程及应用.
    【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.
    【解答】解:设甲每小时做x个零件,可得:,
    故选:D.
    【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
    二.填空题(共6小题)
    12.(2021•广州)方程x2﹣4x=0的实数解是  x1=0,x2=4 .
    【考点】解一元二次方程﹣因式分解法. 版权所有
    【专题】一次方程(组)及应用;运算能力.
    【分析】方程利用因式分解法求出解即可.
    【解答】解:方程x2﹣4x=0,
    分解因式得:x(x﹣4)=0,
    可得x=0或x﹣4=0,
    解得:x1=0,x2=4.
    故答案为:x1=0,x2=4.
    【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.
    13.(2021•深圳)已知方程x2+mx﹣3=0的一个根是1,则m的值为  2 .
    【考点】一元二次方程的解. 版权所有
    【专题】一元二次方程及应用;推理能力.
    【分析】根据一元二次方程的解把x=1代入一元二次方程得到关于m的一次方程,然后解一次方程即可.
    【解答】解:把x=1代入x2+mx﹣3=0得12+m﹣3=0,
    解得m=2.
    故答案是:2.
    【点评】本题考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    14.(2020•广州)方程=的解是 x= .
    【考点】解分式方程. 版权所有
    【专题】分式方程及应用;运算能力.
    【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【解答】解:方程=,
    去分母得:2x=3,
    解得:x=,
    经检验,分式方程的解为x=.
    故答案为:x=.
    【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为  x2﹣2=0(答案不唯一) .
    【考点】一元二次方程的定义. 版权所有
    【专题】一元二次方程及应用;推理能力.
    【分析】根据一元二次方程的定义解决问题即可,注意答案不唯一.
    【解答】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,
    ∴满足条件的方程可以为:x2﹣2=0(答案不唯一),
    故答案为:x2﹣2=0(答案不唯一).
    【点评】本题考查一元二次方程的定义,解题的关键是理解题意,灵活运用所学知识解决问题.
    16.(2021•广东)二元一次方程组的解为   .
    【考点】解二元一次方程组. 版权所有
    【专题】一次方程(组)及应用;运算能力.
    【分析】直接利用加减消元法求解可得问题的答案.
    【解答】解:,
    ①×2﹣②,得:3y=﹣6,即y=﹣2,
    将y=﹣2代入②,得:2x+(﹣2)=2,
    解得:x=2,
    所以方程组的解为.
    故答案为.
    【点评】本题考查的是解二元一次方程组,利用加减消元法把方程组化为一元方程是解答此题的关键.
    17.(2018•广州)方程=的解是 x=2 .
    【考点】解分式方程. 版权所有
    【专题】计算题;分式方程及应用.
    【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【解答】解:去分母得:x+6=4x,
    解得:x=2,
    经检验x=2是分式方程的解,
    故答案为:x=2
    【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    三.解答题(共3小题)
    18.(2021•广东)解不等式组.
    【考点】解一元一次不等式组. 版权所有
    【专题】一元一次不等式(组)及应用;运算能力.
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
    【解答】解:解不等式2x﹣4>3(x﹣2),得:x<2,
    解不等式4x>,得:x>﹣1,
    则不等式组的解集为﹣1<x<2.
    【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    19.(2021•广州)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.
    (1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;
    (2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?
    【考点】一元一次不等式的应用;一元一次方程的应用. 版权所有
    【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.
    【分析】(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,根据今年计划新增加培训共100万人次,即可得出关于x的一元一次方程,解之即可得出结论;
    (2)设李某的年工资收入增长率为m,利用李某今年的年工资收入=李某去年的年工资收入×(1+增长率),结合预计李某今年的年工资收入不低于12.48万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小值即可得出结论.
    【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,
    依题意得:31+2x+x=100,
    解得:x=23.
    答:“南粤家政”今年计划新增加培训23万人次.
    (2)设李某的年工资收入增长率为m,
    依题意得:9.6(1+m)≥12.48,
    解得:m≥0.3=30%.
    答:李某的年工资收入增长率至少要达到30%.
    【点评】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    20.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
    (1)计划到2020年底,全省5G基站的数量是多少万座?
    (2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.
    【考点】一元二次方程的应用. 版权所有
    【专题】方程思想;一元二次方程及应用.
    【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;
    (2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
    【解答】解:(1)1.5×4=6(万座).
    答:计划到2020年底,全省5G基站的数量是6万座.
    (2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,
    依题意,得:6(1+x)2=17.34,
    解得:x1=0.7=70%,x2=﹣2.7(舍去).
    答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.
    【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.

    考点卡片
    1.由实际问题抽象出一元一次方程
    审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.
    (1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.
    (2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.
    2.一元一次方程的应用
    (一)一元一次方程解应用题的类型有:
    (1)探索规律型问题;
    (2)数字问题;
    (3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
    (5)行程问题(路程=速度×时间);
    (6)等值变换问题;
    (7)和,差,倍,分问题;
    (8)分配问题;
    (9)比赛积分问题;
    (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
    (二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.
    列一元一次方程解应用题的五个步骤
    1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
    2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
    3.列:根据等量关系列出方程.
    4.解:解方程,求得未知数的值.
    5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
    3.解二元一次方程组
    (1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.
    (2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.
    4.由实际问题抽象出二元一次方程组
    (1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.
    (2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.
    (3)找等量关系是列方程组的关键和难点,有如下规律和方法:
    ①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.
    5.一元二次方程的定义
    (1)一元二次方程的定义:
    只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
    (2)概念解析:
    一元二次方程必须同时满足三个条件:
    ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
    ②只含有一个未知数;
    ③未知数的最高次数是2.
    (3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
    6.一元二次方程的解
    (1)一元二次方程的解(根)的意义:
    能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
    (2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.
    ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).
    7.解一元二次方程-因式分解法
    (1)因式分解法解一元二次方程的意义
    因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
    因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
    (2)因式分解法解一元二次方程的一般步骤:
    ①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
    8.根的判别式
    利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.
    一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:
    ①当△>0时,方程有两个不相等的两个实数根;
    ②当△=0时,方程有两个相等的两个实数根;
    ③当△<0时,方程无实数根.
    上面的结论反过来也成立.
    9.根与系数的关系
    (1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.
    (2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.
    (3)常用根与系数的关系解决以下问题:
    ①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.
    10.一元二次方程的应用
    1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.
    2、列一元二次方程解应用题中常见问题:
    (1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.
    (2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即 原数×(1+增长百分率)2=后来数.
    (3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.
    (4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.
    【规律方法】列一元二次方程解应用题的“六字诀”
    1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.
    2.设:根据题意,可以直接设未知数,也可以间接设未知数.
    3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.
    4.解:准确求出方程的解.
    5.验:检验所求出的根是否符合所列方程和实际问题.
    6.答:写出答案.
    11.分式方程的解
    求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
    注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
    12.解分式方程
    (1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
    (2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:
    ①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.
    ②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.
    所以解分式方程时,一定要检验.
    13.由实际问题抽象出分式方程
    由实际问题抽象出分式方程的关键是分析题意找出相等关系.
    (1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.
    (2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.
    14.在数轴上表示不等式的解集
    用数轴表示不等式的解集时,要注意“两定”:
    一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;
    二是定方向,定方向的原则是:“小于向左,大于向右”.
    【规律方法】不等式解集的验证方法
      某不等式求得的解集为x>a,其验证方法可以先将a代入原不等式,则两边相等,其次在x>a的范围内取一个数代入原不等式,则原不等式成立.
    15.解一元一次不等式
    根据不等式的性质解一元一次不等式
    基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.
    以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.
    注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.
    16.一元一次不等式的应用
    (1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.
    (2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.
    (3)列一元一次不等式解决实际问题的方法和步骤:
    ①弄清题中数量关系,用字母表示未知数.
    ②根据题中的不等关系列出不等式.
    ③解不等式,求出解集.
    ④写出符合题意的解.
    17.解一元一次不等式组
    (1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
    (2)解不等式组:求不等式组的解集的过程叫解不等式组.
    (3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.
    方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.
    解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    18.一次函数的性质
    一次函数的性质:
    k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
    由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.

    相关试卷

    2017-2021年山东中考数学真题分类汇编之方程与不等式:

    这是一份2017-2021年山东中考数学真题分类汇编之方程与不等式,共27页。

    2017-2021年江苏中考数学真题分类汇编之方程与不等式:

    这是一份2017-2021年江苏中考数学真题分类汇编之方程与不等式,共27页。

    2017-2021年四川中考数学真题分类汇编之方程与不等式:

    这是一份2017-2021年四川中考数学真题分类汇编之方程与不等式,共26页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map