|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年江苏省苏州区学校七校联考中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022年江苏省苏州区学校七校联考中考数学模拟预测题含解析01
    2022年江苏省苏州区学校七校联考中考数学模拟预测题含解析02
    2022年江苏省苏州区学校七校联考中考数学模拟预测题含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省苏州区学校七校联考中考数学模拟预测题含解析

    展开
    这是一份2022年江苏省苏州区学校七校联考中考数学模拟预测题含解析,共27页。试卷主要包含了如图,在中,边上的高是等内容,欢迎下载使用。

    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是( )
    A.B.
    C.D.
    2.一个正比例函数的图象过点(2,﹣3),它的表达式为( )
    A.B.C.D.
    3.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为( )
    A.B.C.D.
    4.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
    A.DE=EBB.DE=EBC.DE=DOD.DE=OB
    5.如图,已知点 P 是双曲线 y=上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ,则经过点 Q 的双曲线的表达式为( )
    A.y= B.y=﹣ C.y= D.y=﹣
    6.如图,在中,边上的高是( )
    A.B.C.D.
    7.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )
    A.线段DB绕点D顺时针旋转一定能与线段DC重合
    B.线段DB绕点D顺时针旋转一定能与线段DI熏合
    C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
    D.线段ID绕点I顺时针旋转一定能与线段IB重合
    8.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )
    A.B.C.D.
    9.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )
    A.B.
    C.D.
    10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
    A.B.C.D.
    11.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )
    A.B.C.D.
    12.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是( )
    A.B.C.D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.
    14.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.
    15.方程的解是_____.
    16.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.
    ①MN=BM+DN
    ②△CMN的周长等于正方形ABCD的边长的两倍;
    ③EF1=BE1+DF1;
    ④点A到MN的距离等于正方形的边长
    ⑤△AEN、△AFM都为等腰直角三角形.
    ⑥S△AMN=1S△AEF
    ⑦S正方形ABCD:S△AMN=1AB:MN
    ⑧设AB=a,MN=b,则≥1﹣1.
    17.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.
    18.已知反比例函数的图像经过点(-2017,2018),当时,函数值y随自变量x的值增大而_________.(填“增大”或“减小”)
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
    (1)求证:EF是⊙O的切线.
    (2)如果⊙O的半径为5,sin∠ADE=,求BF的长.
    20.(6分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=4,求MC的长.
    21.(6分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.
    22.(8分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中≌,可知,求得______.如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
    求证:.
    若,求的度数.

    23.(8分)如图,在△ABC中,AB=AC,点,在边上,.求证:.
    24.(10分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
    (1)求证:AC=CE;
    (2)求证:BC2﹣AC2=AB•AC;
    (1)已知⊙O的半径为1.
    ①若=,求BC的长;
    ②当为何值时,AB•AC的值最大?
    25.(10分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).
    26.(12分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
    (1)求y与x的函数关系式;
    (2)直接写出自变量x的取值范围.
    27.(12分)如图,在中,以为直径的⊙交于点,过点作于点,且.
    ()判断与⊙的位置关系并说明理由;
    ()若,,求⊙的半径.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据题意,将运动过程分成两段.分段讨论求出解析式即可.
    【详解】
    ∵BD=2,∠B=60°,
    ∴点D到AB距离为,
    当0≤x≤2时,
    y=;
    当2≤x≤4时,y=.
    根据函数解析式,A符合条件.
    故选A.
    【点睛】
    本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
    2、A
    【解析】
    利用待定系数法即可求解.
    【详解】
    设函数的解析式是y=kx,
    根据题意得:2k=﹣3,解得:k=.
    ∴ 函数的解析式是:.
    故选A.
    3、C
    【解析】
    过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可.
    【详解】
    解:如图,过点A作AF⊥DE于F,
    在矩形ABCD中,AB=CD,
    ∵AE平分∠BED,
    ∴AF=AB,
    ∵BC=2AB,
    ∴BC=2AF,
    ∴∠ADF=30°,
    在△AFD与△DCE中
    ∵∠C=∠AFD=90°,
    ∠ADF=∠DEC,
    AF=DC,,
    ∴△AFD≌△DCE(AAS),
    ∴△CDE的面积=△AFD的面积=
    ∵矩形ABCD的面积=AB•BC=2AB2,
    ∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2﹣)AB2,
    ∴△ABE的面积=,
    ∴,
    故选:C.
    【点睛】
    本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.
    4、D
    【解析】
    解:连接EO.
    ∴∠B=∠OEB,
    ∵∠OEB=∠D+∠DOE,∠AOB=3∠D,
    ∴∠B+∠D=3∠D,
    ∴∠D+∠DOE+∠D=3∠D,
    ∴∠DOE=∠D,
    ∴ED=EO=OB,
    故选D.
    5、D
    【解析】
    过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.
    【详解】
    过P,Q分别作PM⊥x轴,QN⊥x轴,
    ∵∠POQ=90°,
    ∴∠QON+∠POM=90°,
    ∵∠QON+∠OQN=90°,
    ∴∠POM=∠OQN,
    由旋转可得OP=OQ,
    在△QON和△OPM中,

    ∴△QON≌△OPM(AAS),
    ∴ON=PM,QN=OM,
    设P(a,b),则有Q(-b,a),
    由点P在y=上,得到ab=3,可得-ab=-3,
    则点Q在y=-上.
    故选D.
    【点睛】
    此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.
    6、D
    【解析】
    根据三角形的高线的定义解答.
    【详解】
    根据高的定义,AF为△ABC中BC边上的高.
    故选D.
    【点睛】
    本题考查了三角形的高的定义,熟记概念是解题的关键.
    7、D
    【解析】
    解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
    ∴=,∴BD=CD,故A正确,不符合题意;
    ∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
    故选D.
    点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
    8、A
    【解析】
    圆柱体的底面积为:π×()2,
    ∴矿石的体积为:π×()2h= .
    故答案为.
    9、D
    【解析】
    根据图象可设二次函数的顶点式,再将点(0,0)代入即可.
    【详解】
    解:根据图象,设函数解析式为
    由图象可知,顶点为(1,3)
    ∴,
    将点(0,0)代入得
    解得

    故答案为:D.
    【点睛】
    本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.
    10、B
    【解析】
    由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
    故选B.
    11、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形
    12、B
    【解析】
    根据题意,在实验中有3个阶段,
    ①、铁块在液面以下,液面得高度不变;
    ②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
    ③、铁块在液面以上,完全露出时,液面高度又维持不变;
    分析可得,B符合描述;
    故选B.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、7
    【解析】
    设树的高度为m,由相似可得,解得,所以树的高度为7m
    14、
    【解析】
    先求出球的总数,再根据概率公式求解即可.
    【详解】
    ∵不透明的袋子里装有2个白球,1个红球,
    ∴球的总数=2+1=3,
    ∴从袋子中随机摸出1个球,则摸出白球的概率=.
    故答案为.
    【点睛】
    本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.
    15、1
    【解析】
    ,
    ,
    x=1,
    代入最简公分母,x=1是方程的解.
    16、①②③④⑤⑥⑦.
    【解析】
    将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.
    【详解】
    将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.
    则∠DAH=∠BAM,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∵∠MAN=45°,
    ∴∠BAN+∠DAN=45°,
    ∴∠NAH=45°,
    在△MAN和△HAN中,

    ∴△MAN≌△HAN,
    ∴MN=NH=BM+DN,①正确;
    ∵BM+DN≥1,(当且仅当BM=DN时,取等号)
    ∴BM=DN时,MN最小,
    ∴BM=b,
    ∵DH=BM=b,
    ∴DH=DN,
    ∵AD⊥HN,
    ∴∠DAH=∠HAN=11.5°,
    在DA上取一点G,使DG=DH=b,
    ∴∠DGH=45°,HG=DH=b,
    ∵∠DGH=45°,∠DAH=11.5°,
    ∴∠AHG=∠HAD,
    ∴AG=HG=b,
    ∴AB=AD=AG+DG=b+b=b=a,
    ∴,
    ∴,
    当点M和点B重合时,点N和点C重合,此时,MN最大=AB,
    即:,
    ∴≤≤1,⑧错误;
    ∵MN=NH=BM+DN
    ∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,
    ∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;
    ∵△MAN≌△HAN,
    ∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;

    如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
    ∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,
    ∴∠EAH=∠EAF=45°,
    ∵EA=EA,AH=AD,
    ∴△EAH≌△EAF,
    ∴EF=HE,
    ∵∠ABH=∠ADF=45°=∠ABD,
    ∴∠HBE=90°,
    在Rt△BHE中,HE1=BH1+BE1,
    ∵BH=DF,EF=HE,
    ∵EF1=BE1+DF1,③结论正确;
    ∵四边形ABCD是正方形,
    ∴∠ADC=90°,∠BDC=∠ADB=45°,
    ∵∠MAN=45°,
    ∴∠EAN=∠EDN,
    ∴A、E、N、D四点共圆,
    ∴∠ADN+∠AEN=180°,
    ∴∠AEN=90°
    ∴△AEN是等腰直角三角形,
    同理△AFM是等腰直角三角形;⑤结论正确;
    ∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
    ∴AM=AF,AN=AE,
    如图3,过点M作MP⊥AN于P,
    在Rt△APM中,∠MAN=45°,
    ∴MP=AMsin45°,
    ∵S△AMN=AN•MP=AM•AN•sin45°,
    S△AEF=AE•AF•sin45°,
    ∴S△AMN:S△AEF=1,
    ∴S△AMN=1S△AEF,⑥正确;
    ∵点A到MN的距离等于正方形ABCD的边长,
    ∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.
    即:正确的有①②③④⑤⑥⑦,
    故答案为①②③④⑤⑥⑦.
    【点睛】
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.
    17、
    【解析】
    根据垂径定理求得 然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.
    【详解】
    如图,假设线段CD、AB交于点E,
    ∵AB是O的直径,弦CD⊥AB,

    又∵


    ∴S阴影=S扇形ODB−S△DOE+S△BEC
    故答案为:.
    【点睛】
    考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.
    18、增大
    【解析】
    根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性.
    【详解】
    ∵反比例函数的图像经过点(-2017,2018),
    ∴k=-2017×2018<0,
    ∴当x>0时,y随x的增大而增大.
    故答案为增大.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)答案见解析;(2).
    【解析】
    试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
    (2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.
    试题解析:(1)证明:连结OD
    ∵OD=OB∴∠ODB=∠DBO
    又AB=AC
    ∴∠DBO=∠C
    ∴∠ODB =∠C
    ∴OD ∥AC
    又DE⊥AC
    ∴DE ⊥OD
    ∴EF是⊙O的切线.
    (2)∵AB是直径
    ∴∠ADB=90 °
    ∴∠ADC=90 °
    即∠1+∠2=90 °又∠C+∠2=90 °
    ∴∠1=∠C
    ∴∠1 =∠3


    ∴AD=8
    在Rt△ADB中,AB=10∴BD=6
    在又Rt△AED中,

    设BF=x
    ∵OD ∥AE
    ∴△ODF∽△AEF
    ∴ ,即,
    解得:x=
    20、(1)证明见解析;(2)MC=.
    【解析】
    【分析】(1)连接OC,利用切线的性质证明即可;
    (2)根据相似三角形的判定和性质以及勾股定理解答即可.
    【详解】(1)连接OC,
    ∵CN为⊙O的切线,
    ∴OC⊥CM,∠OCA+∠ACM=90°,
    ∵OM⊥AB,
    ∴∠OAC+∠ODA=90°,
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∴∠ACM=∠ODA=∠CDM,
    ∴MD=MC;
    (2)由题意可知AB=5×2=10,AC=4,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴BC==2,
    ∵∠AOD=∠ACB,∠A=∠A,
    ∴△AOD∽△ACB,
    ∴,即,
    可得:OD=2.5,
    设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,
    解得:x=,
    即MC=.
    【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.
    21、 (1)证明见解析;(2)1-π.
    【解析】
    (1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
    (2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
    【详解】
    (1)过C作CF⊥AB于F.
    ∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
    ∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
    ∵CF⊥AB,∴AB为⊙C的切线;
    (2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
    【点睛】
    本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
    22、阅读发现:90°;(1)证明见解析;(2)100°
    【解析】
    阅读发现:只要证明,即可证明.
    拓展应用:欲证明,只要证明≌即可.
    根据即可计算.
    【详解】
    解:如图中,四边形ABCD是正方形,
    ,,
    ≌,






    故答案为
    为等边三角形,
    ,.
    为等边三角形,
    ,.
    四边形ABCD为矩形,
    ,.

    ,,

    在和中,

    ≌.

    ≌,


    【点睛】
    本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.
    23、见解析
    【解析】
    试题分析:证明△ABE≌△ACD 即可.
    试题解析:法1:
    ∵AB=AC,
    ∴∠B=∠C,
    ∵AD=CE,
    ∴∠ADE=∠AED,
    ∴△ABE≌△ACD,
    ∴BE=CD ,
    ∴BD=CE,
    法2:如图,作AF⊥BC于F,
    ∵AB=AC,
    ∴BF=CF,
    ∵AD=AE,
    ∴DF=EF,
    ∴BF-DF=CF-EF,
    即BD=CE.
    24、(1)证明见解析;(2)证明见解析;(1)①BC=4;②
    【解析】
    分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
    (2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;
    (1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
    详解:(1)∵四边形EBDC为菱形,
    ∴∠D=∠BEC,
    ∵四边形ABDC是圆的内接四边形,
    ∴∠A+∠D=180°,
    又∠BEC+∠AEC=180°,
    ∴∠A=∠AEC,
    ∴AC=CE;
    (2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
    由(1)知AC=CE=CD,
    ∴CF=CG=AC,
    ∵四边形AEFG是⊙C的内接四边形,
    ∴∠G+∠AEF=180°,
    又∵∠AEF+∠BEF=180°,
    ∴∠G=∠BEF,
    ∵∠EBF=∠GBA,
    ∴△BEF∽△BGA,
    ∴,即BF•BG=BE•AB,
    ∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
    ∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
    (1)设AB=5k、AC=1k,
    ∵BC2﹣AC2=AB•AC,
    ∴BC=2k,
    连接ED交BC于点M,
    ∵四边形BDCE是菱形,
    ∴DE垂直平分BC,
    则点E、O、M、D共线,
    在Rt△DMC中,DC=AC=1k,MC=BC=k,
    ∴DM=,
    ∴OM=OD﹣DM=1﹣k,
    在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,
    解得:k=或k=0(舍),
    ∴BC=2k=4;
    ②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,
    ∴BC2=(2MC)2=16﹣4d2,
    AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,
    由(2)得AB•AC=BC2﹣AC2
    =﹣4d2+6d+18
    =﹣4(d﹣)2+,
    ∴当d=,即OM=时,AB•AC最大,最大值为,
    ∴DC2=,
    ∴AC=DC=,
    ∴AB=,此时.
    点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
    25、甲建筑物的高AB为(30-30)m,乙建筑物的高DC为30m
    【解析】
    如图,过A作AF⊥CD于点F,
    在Rt△BCD中,∠DBC=60°,BC=30m,
    ∵=tan∠DBC,
    ∴CD=BC•tan60°=30m,
    ∴乙建筑物的高度为30m;
    在Rt△AFD中,∠DAF=45°,
    ∴DF=AF=BC=30m,
    ∴AB=CF=CD﹣DF=(30﹣30)m,
    ∴甲建筑物的高度为(30﹣30)m.
    26、(1)y=-2x+31,(2)20≤x≤1
    【解析】
    试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
    (2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
    试题解析:
    (1)设y与x的函数关系式为y=kx+b,根据题意,得:

    解得:
    ∴y与x的函数解析式为y=-2x+31,
    (2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
    ∴自变量x的取值范围是20≤x≤1.
    27、(1)DE与⊙O相切,详见解析;(2)5
    【解析】
    (1) 根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE = 90°,说明相切的位置关系。
    (2)根据直径所对的圆心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE = 90°可以推导出∠DAB=∠C, 可判定△ABC是等腰三角形,再根据BD⊥AC可知D是AC的中点,从而得出AD的长度,再在Rt△ADB中计算出直径AB的长,从而算出半径。
    【详解】
    (1)连接OD,在⊙O中,因为AB是直径,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因为∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD过圆心,D是圆上一点,故DE是⊙O切线上的一段,因此位置关系是直线DE与⊙O相切;
    (2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,则∠BDE+∠ABD=90°,因为DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,则∠ABD=∠DBE,又因为BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底边BC上的高,则D是AC的中点,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB为直径,所以⊙O的半径是5.
    【点睛】
    本题主要考查圆中的计算问题和与圆有关的位置关系,解本题的要点在于求出AD的长,从而求出AB的长.
    相关试卷

    2022届甘肃省武威凉州区四校联考中考数学模拟预测题含解析: 这是一份2022届甘肃省武威凉州区四校联考中考数学模拟预测题含解析,共19页。试卷主要包含了的值为,若,则x-y的正确结果是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年江苏省淮安洪泽区四校联考中考数学模拟预测题含解析: 这是一份2021-2022学年江苏省淮安洪泽区四校联考中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式,最简二次根式是,已知,,且,则的值为,如图所示等内容,欢迎下载使用。

    江苏省淮安市八校联考2022年中考数学模拟预测题含解析: 这是一份江苏省淮安市八校联考2022年中考数学模拟预测题含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,如图,与∠1是内错角的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map