


2022年江苏省淮安市洪泽区中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )
A. B. C. D.
2.的绝对值是( )
A. B. C. D.
3.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
A.平均数和中位数不变 B.平均数增加,中位数不变
C.平均数不变,中位数增加 D.平均数和中位数都增大
4.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
A.140元 B.150元 C.160元 D.200元
5.下列等式正确的是( )
A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1
C.a3+a3=a6 D.(ab)2=a
6.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为( )米.
A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×106
7.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是( )
A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2
8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为( )
A. B.1 C. D.
9.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )
A.经过集中喷洒药物,室内空气中的含药量最高达到
B.室内空气中的含药量不低于的持续时间达到了
C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
10.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.圆锥的底面半径为2,母线长为6,则它的侧面积为_____.
12.对于一切不小于2的自然数n,关于x的一元二次方程x2﹣(n+2)x﹣2n2=0的两个根记作an,bn(n≥2),则______
13.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)
14.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为 .
15.因式分解:a3﹣2a2b+ab2=_____.
16.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.
17.因式分解:________.
三、解答题(共7小题,满分69分)
18.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
19.(5分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
求证:AB=DE
20.(8分)计算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.
21.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
22.(10分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)
画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.
23.(12分)先化简,再求值:(﹣2)÷,其中x满足x2﹣x﹣4=0
24.(14分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
【详解】
画树状图如下:
一共有20种情况,其中两个球中至少有一个红球的有14种情况,
因此两个球中至少有一个红球的概率是:.
故选:D.
【点睛】
此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
2、C
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
【详解】
在数轴上,点到原点的距离是,
所以,的绝对值是,
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握绝对值的概念.
3、B
【解析】
本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
【详解】
解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然
;
由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
故选B.
【点睛】
本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
4、B
【解析】
试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
故选B.
考点:一元一次方程的应用
5、B
【解析】
(1)根据完全平方公式进行解答;
(2)根据合并同类项进行解答;
(3)根据合并同类项进行解答;
(4)根据幂的乘方进行解答.
【详解】
解:A、(a+b)2=a2+2ab+b2,故此选项错误;
B、3n+3n+3n=3n+1,正确;
C、a3+a3=2a3,故此选项错误;
D、(ab)2=a2b,故此选项错误;
故选B.
【点睛】
本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.
6、C
【解析】
423公里=423 000米=4.23×105米.
故选C.
7、C
【解析】
【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.
【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,
∴不等式y1>y2的解集是﹣3<x<0或x>2,
故选C.
【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.
8、B
【解析】
根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.
【详解】
∠ACB=90°,∠A=30°,
BC=AB.
BC=2,
AB=2BC=22=4,
D是AB的中点,
CD=AB= 4=2.
E,F分别为AC,AD的中点,
EF是△ACD的中位线.
EF=CD= 2=1.
故答案选B.
【点睛】
本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.
9、C
【解析】
利用图中信息一一判断即可.
【详解】
解: A、正确.不符合题意.
B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
D、正确.不符合题意,
故选C.
【点睛】
本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
10、C
【解析】
先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.
【详解】
小进跑800米用的时间为秒,小俊跑800米用的时间为秒,
∵小进比小俊少用了40秒,
方程是,
故选C.
【点睛】
本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、12π.
【解析】
试题分析:根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.
解:根据圆锥的侧面积公式:πrl=π×2×6=12π,
故答案为12π.
考点:圆锥的计算.
12、﹣.
【解析】
试题分析:由根与系数的关系得:,
则, 则,
∴原式=.
点睛:本题主要考查的就是一元二次方程的韦达定理以及规律的整理,属于中等题型.解决这个问题的关键就是要想到使用韦达定理,然后根据计算的法则得出规律,从而达到简便计算的目的.
13、2.5×1
【解析】
先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
【详解】
1 300 000 000÷52÷1 000(千克)=25 000(千克)=2.5×1(千克).
故答案为2.5×1.
【点睛】
本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
14、1
【解析】
设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.
【详解】
解:设反比例函数解析式为y=,
根据题意得k=3×(﹣4)=﹣2m,
解得m=1.
故答案为1.
考点:反比例函数图象上点的坐标特征.
15、a(a﹣b)1.
【解析】
【分析】先提公因式a,然后再利用完全平方公式进行分解即可.
【详解】原式=a(a1﹣1ab+b1)
=a(a﹣b)1,
故答案为a(a﹣b)1.
【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
16、100
【解析】
先在直角△ABE中利用三角函数求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.
解:如图,作AE⊥BC于点E.
∵∠EAB=30°,AB=100,
∴BE=50,AE=50.
∵BC=200,
∴CE=1.
在Rt△ACE中,根据勾股定理得:AC=100.
即此时王英同学离A地的距离是100米.
故答案为100.
解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
17、n(m+2)(m﹣2)
【解析】
先提取公因式 n,再利用平方差公式分解即可.
【详解】
m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..
故答案为n(m+2)(m﹣2).
【点睛】
本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键
三、解答题(共7小题,满分69分)
18、(1),; (2);(3).
【解析】
试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.
试题解析:(1);
(2);
(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:
由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)
考点:统计与概率的综合运用.
19、证明见解析.
【解析】
证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
20、1-
【解析】
利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.
【详解】
解:原式=.
【点睛】
本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.
21、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
【点睛】
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
22、解:(1)如图,△A1B1C1即为所求,C1(2,-2).(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10
【解析】
分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、、 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用△B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
本题解析:(1)如图,△A1B1C1即为所求,C1(2,-2)
(2)如图,△B为所求, (1,0),
△B 的面积:
6×4−×2×6−×2×4−×2×4=24−6−4−4=24−14=10,
23、1
【解析】
首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.
【详解】
解:(﹣2)÷
=
=x2﹣3﹣2x+2
=x2﹣2x﹣1,
∵x2﹣x﹣4=0,
∴x2﹣2x=8,
∴原式=8﹣1=1.
【点睛】
分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.
24、-1
【解析】
原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.
【详解】
解:原式=﹣4+1+1+1=﹣1.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
2023年江苏省淮安市洪泽区中考数学一模试卷(含解析): 这是一份2023年江苏省淮安市洪泽区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省淮安市洪泽区2022年中考数学对点突破模拟试卷含解析: 这是一份江苏省淮安市洪泽区2022年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
江苏省淮安市洪泽区教育联盟校2022年中考数学模试卷含解析: 这是一份江苏省淮安市洪泽区教育联盟校2022年中考数学模试卷含解析,共19页。试卷主要包含了如图,在中,边上的高是等内容,欢迎下载使用。