|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年成都九中重点中学中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    2022年成都九中重点中学中考数学最后一模试卷含解析01
    2022年成都九中重点中学中考数学最后一模试卷含解析02
    2022年成都九中重点中学中考数学最后一模试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年成都九中重点中学中考数学最后一模试卷含解析

    展开
    这是一份2022年成都九中重点中学中考数学最后一模试卷含解析,共19页。试卷主要包含了已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( ).
    A. B. C. D.
    2.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是(  )

    A. B.
    C. D.
    3.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为(  )

    A.16 B.14 C.12 D.10
    4.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为(  )
    A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣4
    5.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米

    A. B. C.+1 D.3
    6.如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )

    A. B. C. D.
    7.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    8.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(  )

    A.200米 B.200米 C.220米 D.100米
    9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为(  )

    A.3 B.4 C.5 D.6
    10.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.
    12.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 .
    13.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.
    14.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.

    15.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.
    16.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
    (1)求tan∠ADF的值;
    (2)证明:DE是⊙O的切线;
    (3)若⊙O的半径R=5,求EF的长.

    18.(8分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.
    (1)求点D沿三条圆弧运动到点G所经过的路线长;
    (2)判断线段GB与DF的长度关系,并说明理由.

    19.(8分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.
    20.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
    本次调查中,王老师一共调查了   名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
    21.(8分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.
    (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)

    22.(10分)已知:如图,△MNQ中,MQ≠NQ.
    (1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;

    (2)参考(1)中构造全等三角形的方法解决下面问题:
    如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.

    23.(12分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    24.已知抛物线y=﹣2x2+4x+c.
    (1)若抛物线与x轴有两个交点,求c的取值范围;
    (2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.
    【详解】
    由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.
    【点睛】
    本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.
    2、D
    【解析】
    根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:
    几何体的左视图是:

    故选D.
    3、B
    【解析】
    根据切线长定理进行求解即可.
    【详解】
    ∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
    ∴AF=AD=2,BD=BE,CE=CF,
    ∵BE+CE=BC=5,
    ∴BD+CF=BC=5,
    ∴△ABC的周长=2+2+5+5=14,
    故选B.
    【点睛】
    本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
    4、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
    【详解】
    14400=1.44×1.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、C
    【解析】
    由题意可知,AC=1,AB=2,∠CAB=90°
    据勾股定理则BC=m;
    ∴AC+BC=(1+)m.
    答:树高为(1+)米.
    故选C.
    6、B
    【解析】
    连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.
    【详解】
    连接BD,

    ∵AB是直径,∠BAD=25°,
    ∴∠ABD=90°-25°=65°,
    ∴∠AGD=∠ABD=65°,
    故选B.
    【点睛】
    此题考查圆周角定理,关键是利用直径得出∠ABD=65°.
    7、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    8、D
    【解析】
    在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
    【详解】
    ∵在热气球C处测得地面B点的俯角分别为45°,
    ∴BD=CD=100米,
    ∵在热气球C处测得地面A点的俯角分别为30°,
    ∴AC=2×100=200米,
    ∴AD==100米,
    ∴AB=AD+BD=100+100=100(1+)米,
    故选D.
    【点睛】
    本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
    9、C
    【解析】
    如图所示,∵(a+b)2=21
    ∴a2+2ab+b2=21,
    ∵大正方形的面积为13,2ab=21﹣13=8,
    ∴小正方形的面积为13﹣8=1.
    故选C.
    考点:勾股定理的证明.
    10、B
    【解析】
    ∵2a=3b,∴ ,∴ ,∴A、C、D选项错误,B选项正确,
    故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.
    详解:根据三角形的三边关系,得
    第三边>4,而<1.
    又第三条边长为整数,
    则第三边是2.
    点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.
    12、3.55×1.
    【解析】
    科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.
    【详解】
    3550000=3.55×1,
    故答案是:3.55×1.
    【点睛】
    考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
    13、y=2(x+3)2+1
    【解析】
    由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.
    【详解】
    抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.
    故答案为:y=2(x+3)2+1
    【点睛】
    本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
    14、(6053,2).
    【解析】
    根据前四次的坐标变化总结规律,从而得解.
    【详解】
    第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…
    发现点P的位置4次一个循环,
    ∵2017÷4=504余1,
    P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,
    ∴P2017(6053,2),
    故答案为(6053,2).
    考点:坐标与图形变化﹣旋转;规律型:点的坐标.
    15、65°或25°
    【解析】
    首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.
    【详解】
    解:分情况讨论:(1)∵AE平分∠BAD,

    ∴∠EAD=∠EAB,
    ∵AD∥BC,
    ∴∠EAD=∠AEB,
    ∴∠BAD=∠AEB,
    ∵∠ABC=50°,
    ∴∠AEB= •(180°-50°)=65°.
    (2)∵AE平分∠BAD,

    ∴∠EAD=∠EAB= ,
    ∵AD∥BC,
    ∴∠AEB=∠DAE=,∠DAB=∠ABC,
    ∵∠ABC=50°,
    ∴∠AEB= ×50°=25°.
    故答案为:65°或25°.
    【点睛】
    本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    16、1
    【解析】
    根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.
    【详解】
    ∵数据x1,x2,x3,x4,x5的平均数是3,
    ∴x1+x2+x3+x4+x5=15,
    则新数据的平均数为=1,
    故答案为:1.
    【点睛】
    本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.

    三、解答题(共8题,共72分)
    17、(1);(2)见解析;(3)
    【解析】
    (1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
    (2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
    (3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
    【详解】
    解:(1)∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵AB=AC,
    ∴∠BAD=∠CAD,
    ∵DE⊥AC,
    ∴∠AFD=90°,
    ∴∠ADF=∠B,
    ∴tan∠ADF=tan∠B==;
    (2)连接OD,
    ∵OD=OA,
    ∴∠ODA=∠OAD,
    ∵∠OAD=∠CAD,
    ∴∠CAD=∠ODA,
    ∴AC∥OD,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∴DE是⊙O的切线;
    (3)设AD=x,则BD=2x,
    ∴AB=x=10,
    ∴x=2,
    ∴AD=2,
    同理得:AF=2,DF=4,
    ∵AF∥OD,
    ∴△AFE∽△ODE,
    ∴,
    ∴=,
    ∴EF=.
    【点睛】
    本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
    18、(1)6π;(2)GB=DF,理由详见解析.
    【解析】
    (1)根据弧长公式l= 计算即可;
    (2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.
    【详解】
    解:(1)∵AD=2,∠DAE=90°,
    ∴弧DE的长 l1= =π,

    同理弧EF的长 l2= =2π,弧FG的长 l3= =3π,
    所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.
    (2)GB=DF.
    理由如下:延长GB交DF于H.
    ∵CD=CB,∠DCF=∠BCG,CF=CG,
    ∴△FDC≌△GBC.
    ∴GB=DF.
    【点睛】
    本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.
    19、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
    【解析】
    (1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;
    (2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.
    【详解】
    解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,
    ∴h=1,
    把原点坐标代入y=(x﹣1)2+k,得,
    (2﹣1)2+k=2,
    解得k=﹣1;
    (2)∵抛物线y=(x﹣1)2+k与x轴有公共点,
    ∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,
    ∴k≤2.
    当x=﹣1时,y=4+k;当x=2时,y=1+k,
    ∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,
    ∴4+k>2且1+k<2,解得﹣4<k<﹣1,
    综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.
    【点睛】
    抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.
    20、(1)20;(2)作图见试题解析;(3).
    【解析】
    (1)由A类的学生数以及所占的百分比即可求得答案;
    (2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;
    (3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.
    【详解】
    (1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);
    故答案为20;
    (2)∵C类女生:20×25%﹣2=3(名);
    D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);
    如图:

    (3)列表如下:A类中的两名男生分别记为A1和A2,

    男A1
    男A2
    女A
    男D
    男A1男D
    男A2男D
    女A男D
    女D
    男A1女D
    男A2女D
    女A女D
    共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:.
    21、1.8米
    【解析】
    设PA=PN=x,Rt△APM中求得=1.6x, 在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.
    【详解】
    在Rt△APN中,∠NAP=45°,
    ∴PA=PN,
    在Rt△APM中,,
    设PA=PN=x,
    ∵∠MAP=58°,
    ∴=1.6x,
    在Rt△BPM中,,
    ∵∠MBP=31°,AB=5,
    ∴,
    ∴ x=3,
    ∴MN=MP-NP=0.6x=1.8(米),
    答:广告牌的宽MN的长为1.8米.
    【点睛】
    熟练掌握三角函数的定义并能够灵活运用是解题的关键.
    22、(1)作图见解析;(2)证明书见解析.
    【解析】
    (1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.
    (2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.
    【详解】
    解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.

    (2)如图,延长DA至E,使得AE=CB,连结CE.
    ∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.
    在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,
    ∴△AECEAC≌△BCA (SAS).∴∠B=∠E,AB=CE.
    ∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.

    考点:1.尺规作图;2.全等三角形的判定和性质.
    23、(1)a=0.3,b=4;(2)99人;(3)
    【解析】
    分析:(1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    详解:(1)a=1-0.15-0.35-0.20=0.3;
    ∵总人数为:3÷0.15=20(人),
    ∴b=20×0.20=4(人);
    故答案为:0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,
    ∴所选两人正好都是甲班学生的概率是:.
    点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    24、 (1)c>﹣2;(2) x1=﹣1,x2=1.
    【解析】
    (1)根据抛物线与x轴有两个交点,b2-4ac>0列不等式求解即可;
    (2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.
    【详解】
    (1)解:∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    即16+8c>0,
    解得c>﹣2;
    (2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,
    ∵抛物线经过点(﹣1,0),
    ∴抛物线与x轴的另一个交点为(1,0),
    ∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.
    【点睛】
    考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.

    相关试卷

    2022年商洛市重点中学中考数学最后一模试卷含解析: 这是一份2022年商洛市重点中学中考数学最后一模试卷含解析,共22页。试卷主要包含了已知,计算 的结果为,下列图形中,是轴对称图形的是,如图,A(4,0),B等内容,欢迎下载使用。

    2022年成都市重点中学中考数学最后一模试卷含解析: 这是一份2022年成都市重点中学中考数学最后一模试卷含解析,共20页。试卷主要包含了四组数中,下列运算正确的是,估算的运算结果应在等内容,欢迎下载使用。

    2022届潜江市重点中学中考数学最后一模试卷含解析: 这是一份2022届潜江市重点中学中考数学最后一模试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集是,下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map