|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届郑州市重点中学中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    2022届郑州市重点中学中考数学最后一模试卷含解析01
    2022届郑州市重点中学中考数学最后一模试卷含解析02
    2022届郑州市重点中学中考数学最后一模试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届郑州市重点中学中考数学最后一模试卷含解析

    展开
    这是一份2022届郑州市重点中学中考数学最后一模试卷含解析,共26页。试卷主要包含了7的相反数是,如图,,则的度数为,关于的叙述正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.分式方程=1的解为(  )
    A.x=1 B.x=0 C.x=﹣ D.x=﹣1
    2.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是(    )

    A.30° B.45° C.50° D.60°
    3.下列各式中的变形,错误的是((  )
    A. B. C. D.
    4.7的相反数是( )
    A.7 B.-7 C. D.-
    5.如图,,则的度数为( )

    A.115° B.110° C.105° D.65°
    6.在下列四个标志中,既是中心对称又是轴对称图形的是(  )
    A. B. C. D.
    7.关于的叙述正确的是(  )
    A.= B.在数轴上不存在表示的点
    C.=± D.与最接近的整数是3
    8.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是(  )

    A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
    C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
    9.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为(  )

    A. B. C. D.
    10.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是(  )
    A.待定系数法 B.配方 C.降次 D.消元
    11.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为(  )
    A.1 B.2 C.3 D.4
    12.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若关于x的函数与x轴仅有一个公共点,则实数k的值为 .
    14.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.

    15.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.
    16.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为_____元.(用含a的式子表示)

    17.计算:____.
    18.|-3|=_________;
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)

    (1)求这7天内小申家每天用水量的平均数和中位数;
    (2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
    (3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.
    20.(6分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.

    (1)依题意补全图1,并求∠BEC的度数;
    (2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;
    (3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.
    21.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.
    (1)用树状图或列表法求出小王去的概率;
    (2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
    22.(8分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
    (1)求线段DE的长度;
    (2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
    (3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.

    23.(8分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
    (1)求该抛物线的表达式和∠ACB的正切值;
    (2)如图2,若∠ACP=45°,求m的值;
    (3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.

    24.(10分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
    设(其中均为整数),则有.
    ∴.这样小明就找到了一种把部分的式子化为平方式的方法.
    请你仿照小明的方法探索并解决下列问题:
    当均为正整数时,若,用含m、n的式子分别表示,得=   ,=   ;
    (2)利用所探索的结论,找一组正整数,填空: +   =(   +   )2;
    (3)若,且均为正整数,求的值.
    25.(10分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
    (1)判断AE与⊙O的位置关系,并说明理由;
    (2)若BC=6,AC=4CE时,求⊙O的半径.

    26.(12分) (1)计算:(a-b)2-a(a-2b);
    (2)解方程:=.
    27.(12分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    首先找出分式的最简公分母,进而去分母,再解分式方程即可.
    【详解】
    解:去分母得:
    x2-x-1=(x+1)2,
    整理得:-3x-2=0,
    解得:x=-,
    检验:当x=-时,(x+1)2≠0,
    故x=-是原方程的根.
    故选C.
    【点睛】
    此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.
    2、D
    【解析】
    根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
    在直角三角形ACD中求出∠D.
    则sinD=
    ∠D=60°
    ∠B=∠D=60°.
    故选D.
    “点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
    3、D
    【解析】
    根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
    【详解】
    A、,故A正确;
    B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
    C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
    D、≠,故D错误;
    故选:D.
    【点睛】
    本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
    4、B
    【解析】
    根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    7的相反数是−7,
    故选:B.
    【点睛】
    此题考查相反数,解题关键在于掌握其定义.
    5、A
    【解析】
    根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.
    【详解】
    ∵∠AFD=65°,
    ∴∠CFB=65°,
    ∵CD∥EB,
    ∴∠B=180°−65°=115°,
    故选:A.
    【点睛】
    本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.
    6、C
    【解析】
    根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.
    【详解】
    解:A、不是中心对称图形,是轴对称图形,故本选项错误;
    B、既不是中心对称图形,也不是轴对称图形,故本选项错误;
    C、既是中心对称图形又是轴对称图形,故本选项正确;
    D、不是中心对称图形,是轴对称图形,故本选项错误.
    故选C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、D
    【解析】
    根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.
    【详解】
    选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;
    选项D,与最接近的整数是=1.
    故选D.
    【点睛】
    本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.
    8、D
    【解析】
    试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5
    考点:列方程
    点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.
    9、D
    【解析】
    解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.

    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.
    10、C
    【解析】
    根据一元二次方程的解的定义即可求出答案.
    【详解】
    由题意可知:a2-a-1=0,
    ∴a2-a=1,
    或a2-1=a
    ∴a3-2a+1
    =a3-a-a+1
    =a(a2-1)-(a-1)
    =a2-a+1
    =1+1
    =2
    故选:C.
    【点睛】
    本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.
    11、B
    【解析】
    先由平均数是3可得x的值,再结合方差公式计算.
    【详解】
    ∵数据1、2、3、x、5的平均数是3,
    ∴=3,
    解得:x=4,
    则数据为1、2、3、4、5,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,
    故选B.
    【点睛】
    本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.
    12、B
    【解析】
    先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.
    【详解】
    ∵△DEF是△AEF翻折而成,
    ∴△DEF≌△AEF,∠A=∠EDF,
    ∵△ABC是等腰直角三角形,
    ∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,

    ∴∠BED=∠CDF,
    设CD=1,CF=x,则CA=CB=2,
    ∴DF=FA=2-x,
    ∴在Rt△CDF中,由勾股定理得,
    CF2+CD2=DF2,
    即x2+1=(2-x)2,
    解得:x=,
    ∴sin∠BED=sin∠CDF=.
    故选B.
    【点睛】
    本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、0或-1。
    【解析】由于没有交待是二次函数,故应分两种情况:
    当k=0时,函数是一次函数,与x轴仅有一个公共点。
    当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。
    综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1。
    14、1
    【解析】
    先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
    【详解】
    解:∵BD=CD,
    ∴,
    ∴OD⊥BC,
    ∴BE=CE,
    而OA=OB,
    ∴OE为△ABC的中位线,
    ∴,
    ∴DE=OD-OE=5-3=1.
    故答案为1.

    【点睛】
    此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.
    15、m<﹣1.
    【解析】
    根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.
    【详解】
    ∵关于x的方程x2﹣2x﹣m=0没有实数根,
    ∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,
    解得:m<﹣1,
    故答案为:m<﹣1.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    16、24a
    【解析】
    根据题意列出代数式即可.
    【详解】
    根据题意得:30a×0.8=24a,
    则应付票价总额为24a元,
    故答案为24a.
    【点睛】
    考查了列代数式,弄清题意是解本题的关键.
    17、5.
    【解析】
    试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.
    考点:绝对值计算.
    18、1
    【解析】
    分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
    解答:解:|-1|=1.
    故答案为1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.
    【解析】
    试题分析:(1)根据平均数和中位数的定义求解可得;
    (2)用洗衣服的水量除以第3天的用水总量即可得;
    (3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.
    试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),
    将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,
    ∴用水量的中位数为800升;
    (2)×100%=12.5%.
    答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;
    (3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.
    20、(1)补全图形如图1所示,见解析,∠BEC=60°;(2)BE=2DE,见解析;(3)∠MAC=90°.
    【解析】
    (1)根据轴对称作出图形,先判断出∠ABD=∠ADB=y,再利用三角形的内角和得出x+y即可得出结论;
    (2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;
    (3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC=60°,即可得出结论.
    【详解】
    (1)补全图形如图1所示,

    根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.
    ∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=60°.
    ∴AB=AD.
    ∴∠ABD=∠ADB=y.
    在△ABD中,2x+2y+60°=180°,
    ∴x+y=60°.
    ∴∠DEM=∠CEM=x+y=60°.
    ∴∠BEC=60°;
    (2)BE=2DE,
    证明:∵△ABC是等边三角形,
    ∴AB=BC=AC,
    由对称知,AD=AC,∠CAD=2∠CAM=60°,
    ∴△ACD是等边三角形,
    ∴CD=AD,
    ∴AB=BC=CD=AD,
    ∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,
    ∴∠ABC=60°,
    ∴∠ABD=∠DBC=30°,
    由(1)知,∠BEC=60°,
    ∴∠ECB=90°.
    ∴BE=2CE.
    ∵CE=DE,
    ∴BE=2DE.
    (3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)
    延长EB至F使BE=BF,
    ∴EF=2BE,
    由轴对称得,DE=CE,
    ∵DE=2BE,
    ∴CE=2BE,
    ∴EF=CE,
    连接CF,同(1)的方法得,∠BEC=60°,
    ∴△CEF是等边三角形,
    ∵BE=BF,
    ∴∠CBE=90°,
    ∴∠BCE=30°,
    ∴∠ACE=30°,
    ∵∠AED=∠AEC,∠BEC=60°,
    ∴∠AEC=60°,
    ∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.

    【点睛】
    此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.
    21、(1);(2)规则是公平的;
    【解析】
    试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
    (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
    试题解析:(1)画树状图为:

    共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
    所以P(小王)=;
    (2)不公平,理由如下:
    ∵P(小王)=,P(小李)=,≠,
    ∴规则不公平.
    点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    22、 (1)2 ;(2) ;(3)见解析.
    【解析】
    分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;
    (2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -m²+m+,根据解析式即可求得,△MPF面积的最大值;
    (3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.
    本题解析:(1)对于抛物线y=﹣x2+x+,
    令x=0,得y=,即C(0,),D(2,),
    ∴DH=,
    令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,
    ∴A(﹣1,0),B(3,0),
    ∵AE⊥AC,EH⊥AH,
    ∴△ACO∽△EAH,
    ∴=,即=,
    解得:EH=,
    则DE=2;
    (2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),
    连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,
    直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,
    联立得:F (0,﹣),P(2,),
    过点M作y轴的平行线交FH于点Q,
    设点M(m,﹣m2+m+),则Q(m, m﹣),(0<m<2);
    ∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,
    ∵对称轴为:直线m=<2,开口向下,
    ∴m=时,△MPF面积有最大值: ;
    (3)由(2)可知C(0,),F(0,),P(2,),
    ∴CF=,CP==,
    ∵OC=,OA=1,
    ∴∠OCA=30°,
    ∵FC=FG,
    ∴∠OCA=∠FGA=30°,
    ∴∠CFP=60°,
    ∴△CFP为等边三角形,边长为,
    翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,
    1)当K F′=KF″时,如图3,
    点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),
    ∴OK=3;
    2)当F′F″=F′K时,如图4,
    ∴F′F″=F′K=4,
    ∵FP的解析式为:y=x﹣,
    ∴在平移过程中,F′K与x轴的夹角为30°,
    ∵∠OAF=30°,
    ∴F′K=F′A
    ∴AK=4
    ∴OK=4﹣1或者4+1;
    3)当F″F′=F″K时,如图5,

    ∵在平移过程中,F″F′始终与x轴夹角为60°,
    ∵∠OAF=30°,
    ∴∠AF′F″=90°,
    ∵F″F′=F″K=4,
    ∴AF″=8,
    ∴AK=12,
    ∴OK=1,
    综上所述:OK=3,4﹣1,4+1或者1.

    点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.
    23、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.
    【解析】
    (1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;
    (2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(1,).待定系数法求出直线CK的解析式为y=-x+1.设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解.解之求得x的值即可得出答案;
    (3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知=.据此得ON=m-1.再证△ONQ∽△HMQ得=.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.
    【详解】
    解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,
    解得:;
    ∴该抛物线的解析式为y=x2﹣3x+1,
    过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.

    ∵∠COA=∠G=90°,∠CAO=∠BAG,
    ∴△GAB∽△OAC.
    ∴=2.
    ∴BG=2AG,
    在Rt△ABG中,∵BG2+AG2=AB2,
    ∴(2AG)2+AG2=22,解得: AG=.
    ∴BG=,CG=AC+AG=2+=.
    在Rt△BCG中,tan∠ACB═.
    (2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.

    应用“全角夹半角”可得AK=OA+HK,
    设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,
    在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,
    ∴22+h2=(6﹣h)2.解得h=,
    ∴点K(1,),
    设直线CK的解析式为y=hx+1,
    将点K(1,)代入上式,得=1h+1.解得h=﹣,
    ∴直线CK的解析式为y=﹣x+1,
    设点P的坐标为(x,y),则x是方程x2﹣3x+1=﹣x+1的一个解,
    将方程整理,得3x2﹣16x=0,
    解得x1=,x2=0(不合题意,舍去)
    将x1=代入y=﹣x+1,得y=,
    ∴点P的坐标为(,),
    ∴m=;
    (3)四边形ADMQ是平行四边形.理由如下:
    ∵CD∥x轴,
    ∴yC=yD=1,
    将y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,
    解得x1=0,x2=6,
    ∴点D(6,1),
    根据题意,得P(m, m2﹣3m+1),M(m,1),H(m,0),
    ∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,
    ①当1<m<6时,DM=6﹣m,
    如图3,

    ∵△OAN∽△HAP,
    ∴,
    ∴=,
    ∴ON===m﹣1,
    ∵△ONQ∽△HMQ,
    ∴,
    ∴,
    ∴,
    ∴OQ=m﹣1,
    ∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,
    ∴AQ=DM=6﹣m,
    又∵AQ∥DM,
    ∴四边形ADMQ是平行四边形.
    ②当m>6时,同理可得:四边形ADMQ是平行四边形.
    综上,四边形ADMQ是平行四边形.
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.
    24、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.
    【解析】
    (1)∵,
    ∴,
    ∴a=m2+3n2,b=2mn.
    故答案为m2+3n2,2mn.
    (2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.
    故答案为1,2,1,2(答案不唯一).
    (3)由题意,得a=m2+3n2,b=2mn.
    ∵2=2mn,且m、n为正整数,
    ∴m=2,n=1或m=1,n=2,
    ∴a=22+3×12=7,或a=12+3×22=1.
    25、(1)AE与⊙O相切.理由见解析.(2)2.1
    【解析】
    (1)连接OM,则OM=OB,利用平行的判定和性质得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性质和切线的判定即可得证;
    (2)设⊙O的半径为r,则AO=12﹣r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证△AOM∽△ABE,根据相似三角形的性质即可求解.
    【详解】
    解:(1)AE与⊙O相切.
    理由如下:
    连接OM,则OM=OB,
    ∴∠OMB=∠OBM,
    ∵BM平分∠ABC,
    ∴∠OBM=∠EBM,
    ∴∠OMB=∠EBM,
    ∴OM∥BC,
    ∴∠AMO=∠AEB,
    在△ABC中,AB=AC,AE是角平分线,
    ∴AE⊥BC,
    ∴∠AEB=90°,
    ∴∠AMO=90°,
    ∴OM⊥AE,
    ∴AE与⊙O相切;
    (2)在△ABC中,AB=AC,AE是角平分线,
    ∴BE=BC,∠ABC=∠C,
    ∵BC=6,cosC=,
    ∴BE=3,cos∠ABC=,
    在△ABE中,∠AEB=90°,
    ∴AB===12,
    设⊙O的半径为r,则AO=12﹣r,
    ∵OM∥BC,
    ∴△AOM∽△ABE,
    ∴,
    ∴=,
    解得:r=2.1,
    ∴⊙O的半径为2.1.
    26、 (1) b2 (2)1
    【解析】
    分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.
    详解:(1) 解:原式=a2-2ab+b2-a2+2ab =b2 ;
    (2) 解:, 解得:x=1,
    经检验 x=1为原方程的根, 所以原方程的解为x=1.
    点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.
    27、1米.
    【解析】
    试题分析:作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.
    试题解析:解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=1.
    答:塔杆CH的高为1米.

    点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.

    相关试卷

    2022年商洛市重点中学中考数学最后一模试卷含解析: 这是一份2022年商洛市重点中学中考数学最后一模试卷含解析,共22页。试卷主要包含了已知,计算 的结果为,下列图形中,是轴对称图形的是,如图,A(4,0),B等内容,欢迎下载使用。

    2022届潜江市重点中学中考数学最后一模试卷含解析: 这是一份2022届潜江市重点中学中考数学最后一模试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集是,下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。

    2022届海西市重点中学中考数学最后一模试卷含解析: 这是一份2022届海西市重点中学中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map