2022届四川省简阳市简城区中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是( )
A. B. C. D.
2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是( )
A. B.
C. D.
3.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是( )
A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
4.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为( )
A.﹣=100 B.﹣=100
C.﹣=100 D.﹣=100
5.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
6.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为
A.75 B.89 C.103 D.139
7.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )
A.75° B.60° C.45° D.30°
8.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是
A. B. C. D.
9.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( )
A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107
10.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转( )
A.36° B.45° C.72° D.90°
二、填空题(共7小题,每小题3分,满分21分)
11.计算(+)(-)的结果等于________.
12.使有意义的x的取值范围是______.
13.若a﹣3有平方根,则实数a的取值范围是_____.
14.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.
15.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.
16.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .
17.分解因式:a3-12a2+36a=______.
三、解答题(共7小题,满分69分)
18.(10分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.
19.(5分)(问题发现)
(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;
(拓展探究)
(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(解决问题)
(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.
20.(8分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.
21.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
22.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.
23.(12分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.
(1)求抛物线的表达式及点B的坐标;
(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;
(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.
24.(14分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;
(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;
(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图得:
∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),
∴点(m,n)在函数y=图象上的概率是:.
故选B.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
2、B
【解析】
根据相似三角形的判定方法一一判断即可.
【详解】
解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选:B.
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
3、D
【解析】
把点P的横坐标减4,纵坐标减3可得P1的坐标;
让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
【详解】
∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
故选D.
【点睛】
本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
4、B
【解析】
【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.
【详解】科普类图书平均每本的价格是x元,则可列方程为:
﹣=100,
故选B.
【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
5、A
【解析】
【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】由图可得,
甲步行的速度为:240÷4=60米/分,故①正确,
乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,
乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,
故选A.
【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.
6、A
【解析】
观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.
7、B
【解析】
将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
【详解】
将圆补充完整,找出点E的位置,如图所示.
∵弧AD所对的圆周角为∠ACD、∠AEC,
∴图中所标点E符合题意.
∵四边形∠CMEN为菱形,且∠CME=60°,
∴△CME为等边三角形,
∴∠AEC=60°.
故选B.
【点睛】
本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
8、B
【解析】
根据常见几何体的展开图即可得.
【详解】
由展开图可知第一个图形是②正方体的展开图,
第2个图形是①圆柱体的展开图,
第3个图形是③三棱柱的展开图,
第4个图形是④四棱锥的展开图,
故选B
【点睛】
本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
9、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
7490000=7.49×106.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、C
【解析】
分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
故选C.
点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
二、填空题(共7小题,每小题3分,满分21分)
11、2
【解析】
利用平方差公式进行计算即可得.
【详解】
原式=
=5-3=2,
故答案为:2.
【点睛】
本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.
12、
【解析】
二次根式有意义的条件.
【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
13、a≥1.
【解析】
根据平方根的定义列出不等式计算即可.
【详解】
根据题意,得
解得:
故答案为
【点睛】
考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.
14、3
【解析】
试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
考点:3.等腰三角形的性质;3.垂直平分线的性质.
15、20 cm.
【解析】
将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
【详解】
解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.
根据勾股定理,得(cm).
故答案为:20cm.
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
16、
【解析】
分析:根据概率的求法,找准两点:
①全部情况的总数;
②符合条件的情况数目;二者的比值就是其发生的概率.
详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为=.
故答案为.
点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.
17、a(a-6)2
【解析】
原式提取a,再利用完全平方公式分解即可.
【详解】
原式=a(a2-12a+36)=a(a-6)2,
故答案为a(a-6)2
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)k=2;(2)点D经过的路径长为.
【解析】
(1)根据题意求得点B的坐标,再代入求得k值即可;
(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.
【详解】
(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,
∴AB=OA=OC=OD=,
∴点B坐标为(,),
代入得k=2;
(2)设平移后与反比例函数图象的交点为D′,
由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,
∵OC=OD=,∠AOB=∠COM=45°,
∴OM=MC=MD=1,
∴D坐标为(﹣1,1),
设D′横坐标为t,则OE=MF=t,
∴D′F=DF=t+1,
∴D′E=D′F+EF=t+2,
∴D′(t,t+2),
∵D′在反比例函数图象上,
∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
∴D′(﹣1, +1),
∴DD′=,
即点D经过的路径长为.
【点睛】
本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.
19、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8
【解析】
(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;
(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.
【详解】
(1)∵AB=AD,CB=CD,
∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
∴AC垂直平分BD,
故答案为AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC的中点,
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四边形AMFN是矩形;
(3)BD′的平方为16+8或16﹣8.
分两种情况:
①以点A为旋转中心将正方形ABCD逆时针旋转60°,
如图所示:过D'作D'E⊥AB,交BA的延长线于E,
由旋转可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=,AE=,
∴BE=2+,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
②以点A为旋转中心将正方形ABCD顺时针旋转60°,
如图所示:过B作BF⊥AD'于F,
旋转可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=,AF=,
∴D'F=2﹣,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
综上所述,BD′平方的长度为16+8或16﹣8.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.
20、(1);(2);(3)
【解析】
(1)OA=6,即BC=6,代入,即可得出点B的坐标
(2)将点B的坐标代入直线l中求出k即可得出解析式
(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.
【详解】
解:∵OA=6,矩形OABC中,BC=OA
∴BC=6
∵点B在直线上,
,解得x=8
故点B的坐标为(8,6)
故答案为(8,6)
(2)把点的坐标代入得,
解得:
∴
(3))∵一次函数,必经过),要使y随x的增大而减小
∴y值为
∴代入,
解得.
【点睛】
本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.
21、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
【解析】
(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.
【详解】
试题分析:
试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,
(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,
补全条形统计图如下:
(3)100000×32%=32000(人),
答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
22、(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
23、(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);
(2)y的取值范围是﹣3≤y<1.
(2)b的取值范围是﹣<b<.
【解析】
(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.
【详解】
(1)∵将A(2,0)代入,得m=1, ∴抛物线的表达式为y=-2x-2.
令-2x-2=0,解得:x=2或x=-1, ∴B点的坐标(-1,0).
(2)y=-2x-2=-3.
∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,
∴当x=1,y最小=-3. 又∵当x=-2,y=1, ∴y的取值范围是-3≤y<1.
(2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+.
当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2.
由函数图象可知;b的取值范围是:-2<b<.
【点睛】
本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.
24、(1)50;4;5;画图见解析;(2)144°;(3)64
【解析】
(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;
(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;
(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.
【详解】
解:(1)∵课外阅读达3小时的共10人,占总人数的20%,
∴=50(人).
∵课外阅读4小时的人数是32%,
∴50×32%=16(人),
∴男生人数=16﹣8=8(人);
∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
∴中位数是4小时,众数是5小时.
补全图形如图所示.
故答案为50,4,5;
(2)∵课外阅读5小时的人数是20人,
∴×360°=144°.
故答案为144°;
(3)∵课外阅读6小时的人数是4人,
∴800×=64(人).
答:九年级一周课外阅读时间为6小时的学生大约有64人.
【点睛】
本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.
四川省简阳市镇金区、简城区2023-2024学年八上数学期末预测试题含答案: 这是一份四川省简阳市镇金区、简城区2023-2024学年八上数学期末预测试题含答案,共7页。试卷主要包含了下面计算正确的是等内容,欢迎下载使用。
四川省简阳市简城区、镇金区2022年中考试题猜想数学试卷含解析: 这是一份四川省简阳市简城区、镇金区2022年中考试题猜想数学试卷含解析,共19页。试卷主要包含了下列运算正确的是,的倒数是,下列式子成立的有个等内容,欢迎下载使用。
2022年四川省简阳市简城区、镇金区十校联考最后数学试题含解析: 这是一份2022年四川省简阳市简城区、镇金区十校联考最后数学试题含解析,共19页。试卷主要包含了下列各数中,最小的数是等内容,欢迎下载使用。