|试卷下载
搜索
    上传资料 赚现金
    2022届三门峡市重点中学中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022届三门峡市重点中学中考数学考试模拟冲刺卷含解析01
    2022届三门峡市重点中学中考数学考试模拟冲刺卷含解析02
    2022届三门峡市重点中学中考数学考试模拟冲刺卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届三门峡市重点中学中考数学考试模拟冲刺卷含解析

    展开
    这是一份2022届三门峡市重点中学中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了函数y=mx2+,已知关于x的一元二次方程等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4
    A.①② B.①③ C.①③④ D.②③④
    2.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )
    A.50 B.0.02 C.0.1 D.1
    3.下列几何体中,俯视图为三角形的是( )
    A. B. C. D.
    4.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为(  )
    A.0 B.0或2 C.0或2或﹣2 D.2或﹣2
    5.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为(  )

    A.5 B.4 C.7 D.5
    6.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是
    A.科比罚球投篮2次,一定全部命中
    B.科比罚球投篮2次,不一定全部命中
    C.科比罚球投篮1次,命中的可能性较大
    D.科比罚球投篮1次,不命中的可能性较小
    7.下列所给函数中,y随x的增大而减小的是(  )
    A.y=﹣x﹣1 B.y=2x2(x≥0)
    C. D.y=x+1
    8.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是(  )
    A.1一定不是关于x的方程x2+bx+a=0的根
    B.0一定不是关于x的方程x2+bx+a=0的根
    C.1和﹣1都是关于x的方程x2+bx+a=0的根
    D.1和﹣1不都是关于x的方程x2+bx+a=0的根
    9.若是关于x的方程的一个根,则方程的另一个根是( )
    A.9 B.4 C.4 D.3
    10.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为(  )
    A.3×109 B.3×108 C.30×108 D.0.3×1010
    11.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为(  )
    A.1000(1+x)2=1000+440 B.1000(1+x)2=440
    C.440(1+x)2=1000 D.1000(1+2x)=1000+440
    12.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )

    A.94分,96分 B.96分,96分
    C.94分,96.4分 D.96分,96.4分
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知,那么__.
    14.(2017四川省攀枝花市)若关于x的分式方程无解,则实数m=_______.
    15.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.

    16.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg
    17.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.

    18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
    (Ⅰ)AC的长等于_____;
    (Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD.

    (1)求证:BD是⊙O的切线;
    (2)若AE=9, CE=12, 求BF的长.
    20.(6分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:1.
    求:(1)背水坡AB的长度.
    (1)坝底BC的长度.

    21.(6分) 如图,在平面直角坐标系中,直线y1=2x+b与坐标轴交于A、B两点,与双曲线 (x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,点B的坐标为(0,﹣2).
    (1)求直线y1=2x+b及双曲线(x>0)的表达式;
    (2)当x>0时,直接写出不等式的解集;
    (3)直线x=3交直线y1=2x+b于点E,交双曲线(x>0)于点F,求△CEF的面积.

    22.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.
    23.(8分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
    求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
    24.(10分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
    25.(10分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.

    26.(12分)先化简,再求值:,其中x为方程的根.
    27.(12分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.

    (1)判断直线l与⊙O的位置关系,并说明理由;
    (2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
    (3)在(2)的条件下,若DE=4,DF=3,求AF的长.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.
    【详解】
    解:①由图象可知,抛物线开口向下,所以①正确;
     ②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
     剩下的选项中都有③,所以③是正确的;
     易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.
    故选:B.
    【点睛】
    本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.
    2、D
    【解析】
    所有小组频数之和等于数据总数,所有频率相加等于1.
    3、C
    【解析】
    俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.
    【详解】
    A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,
    B.几何体的俯视图是长方形,故本选项不符合题意,
    C.三棱柱的俯视图是三角形,故本选项符合题意,
    D.圆台的俯视图是圆环,故本选项不符合题意,
    故选C.
    【点睛】
    此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.
    4、C
    【解析】
    根据函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.
    【详解】
    解:∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,
    ∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,
    当m≠0时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,
    则△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,
    由上可得,m的值为0或2或﹣2,
    故选:C.
    【点睛】
    本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.
    5、C
    【解析】
    连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.
    【详解】
    解:连接AE,

    ∵AC=3,cos∠CAB=,
    ∴AB=3AC=9,
    由勾股定理得,BC==6,
    ∠ACB=90°,点D为AB的中点,
    ∴CD=AB=,
    S△ABC=×3×6=9,
    ∵点D为AB的中点,
    ∴S△ACD=S△ABC=,
    由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,
    则×CD×AE=9,
    解得,AE=4,
    ∴AF=2,
    由勾股定理得,DF==,
    ∵AF=FE,AD=DB,
    ∴BE=2DF=7,
    故选C.
    【点睛】
    本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    6、A
    【解析】
    试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。因此。
    A、科比罚球投篮2次,不一定全部命中,故本选项正确;
    B、科比罚球投篮2次,不一定全部命中,正确,故本选项错误;
    C、∵科比罚球投篮的命中率大约是83.3%,
    ∴科比罚球投篮1次,命中的可能性较大,正确,故本选项错误;
    D、科比罚球投篮1次,不命中的可能性较小,正确,故本选项错误。
    故选A。 
    7、A
    【解析】
    根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.
    【详解】
    解:A.此函数为一次函数,y随x的增大而减小,正确;
    B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;
    C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;
    D.此函数为一次函数,y随x的增大而增大,错误.
    故选A.
    【点睛】
    本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.
    8、D
    【解析】
    根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根.
    【详解】
    ∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,
    ∴,
    ∴b=a+1或b=-(a+1).
    当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;
    当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.
    ∵a+1≠0,
    ∴a+1≠-(a+1),
    ∴1和-1不都是关于x的方程x2+bx+a=0的根.
    故选D.
    【点睛】
    本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
    9、D
    【解析】
    解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,
    解得a=,
    故选D.
    10、A
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    将数据30亿用科学记数法表示为,
    故选A.
    【点睛】
    此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    11、A
    【解析】
    根据题意可以列出相应的一元二次方程,从而可以解答本题.
    【详解】
    解:由题意可得,
    1000(1+x)2=1000+440,
    故选:A.
    【点睛】
    此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.
    12、D
    【解析】
    解:总人数为6÷10%=60(人),
    则91分的有60×20%=12(人),
    98分的有60-6-12-15-9=18(人),
    第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
    这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60
    =(552+1128+1110+1761+900)÷60
    =5781÷60
    =96.1.
    故选D.
    【点睛】
    本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据比例的性质,设x=5a,则y=2a,代入原式即可求解.
    【详解】
    解:∵,
    ∴设x=5a,则y=2a,
    那么.
    故答案为:.
    【点睛】
    本题主要考查了比例的性质,根据比例式用同一个未知数得出的值进而求解是解题关键.
    14、3或1.
    【解析】
    解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;
    ②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.
    综上所述:∴m的值为3或1.
    故答案为3或1.
    15、1.
    【解析】
    由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD=OC−OD求出CD.
    【详解】
    解:∵CD⊥AB,AB=16,
    ∴AD=DB=8,
    在Rt△OAD中,AB=16m,半径OA=10m,
    ∴OD==6,
    ∴CD=OC﹣OD=10﹣6=1(m).
    故答案为1.
    【点睛】
    本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.
    16、20
    【解析】
    设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
    17、1
    【解析】
    试题解析:如图,

    ∵a∥b,∠3=40°,
    ∴∠4=∠3=40°.
    ∵∠1=∠2+∠4=110°,
    ∴∠2=110°-∠4=110°-40°=1°.
    故答案为:1.
    18、5 见解析.
    【解析】
    (1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.
    【详解】
    (1)AC=;
    (2)如图,连接格点M和N,由图可知:
    AB=AM=4,
    BC=AN=,
    AC=MN=,
    ∴△ABC≌△MAN,
    ∴∠AMN=∠BAC,
    ∴∠MAD+∠CAB=∠MAD+∠AMN=90°,
    ∴MN⊥AC,
    易解得△MAN以MN为底时的高为,
    ∵AB2=AD•AC,
    ∴AD=AB2÷AC=,
    综上可知,MN与AC的交点即为所求D点.

    【点睛】
    本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;
    (2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.
    试题解析:(1)证明:∵,
    ∴.
    ∵CD平分,BC=BD,
    ∴,.
    ∴.
    ∴∥.
    ∴.
    ∵AB是⊙O的直径,
    ∴BD是⊙O的切线.
    (2)连接AC,
    ∵AB是⊙O直径,
    ∴.
    ∵,
    可得.

    在Rt△CEB中,∠CEB=90°,由勾股定理得

    ∴.
    ∵,∠EFC =∠BFD,
    ∴△EFC∽△BFD.
    ∴.
    ∴.
    ∴BF=1.

    考点:切线的判定,相似三角形,勾股定理
    20、(1)背水坡的长度为米;(1)坝底的长度为116米.
    【解析】
    (1)分别过点、作,垂足分别为点、,结合题意求得AM,MN,在中,得BM,再利用勾股定理即可.
    (1)在中,求得CN即可得到BC.
    【详解】

    (1)分别过点、作,垂足分别为点、,
    根据题意,可知(米),(米)
    在中∵,∴(米),
    ∵,∴(米).
    答:背水坡的长度为米.
    (1)在中,,
    ∴(米),
    ∴(米)
    答:坝底的长度为116米.
    【点睛】
    本题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.
    21、(1)直线解析式为y1=2x﹣2,双曲线的表达式为y2= (x>0);(2)0<x<2;
    (3)
    【解析】
    (1)将点B的代入直线y1=2x+b,可得b,则可以求得直线解析式;令y=0可得A点坐标为(1,0),又因为OA=AD,则D点坐标为(2,0),把x=2代入直线解析式,可得y=2,从而得到点C的坐标为(2,2),在把(2,2)代入双曲线y2= ,可得k=4,则双曲线的表达式为y2= (x>0).
    (2)由x的取值范围,结合图像可求得答案.
    (3)把x=3代入y2函数,可得y= ;把x=3代入y1函数,可得y=4,从而得到EF,由三角形的面积公式可得S△CEF=.
    【详解】
    解:(1)将点B的坐标(0,﹣2)代入直线y1=2x+b,可得
    ﹣2=b,
    ∴直线解析式为y1=2x﹣2,
    令y=0,则x=1,
    ∴A(1,0),
    ∵OA=AD,
    ∴D(2,0),
    把x=2代入y1=2x﹣2,可得
    y=2,
    ∴点C的坐标为(2,2),
    把(2,2)代入双曲线y2= ,可得k=2×2=4,
    ∴双曲线的表达式为y2= (x>0);
    (2)当x>0时,不等式>2x+b的解集为0<x<2;
    (3)把x=3代入y2=,可得y= ;把x=3代入y1=2x﹣2,可得y=4,
    ∴EF=4﹣=,
    ∴S△CEF=××(3﹣2)=,
    ∴△CEF的面积为.
    【点睛】
    本题考察了一次函数和双曲线例函数的综合;熟练掌握由点求解析式是解题的关键;能够结合图形及三角形面积公式是解题的关键.
    22、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.
    【解析】
    (1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;
    (2)构建方程即可解决问题;
    (3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.
    【详解】
    (1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.
    (2)由题意:20=﹣x2+32x﹣2.
    解得:x=16,
    答:该产品第一年的售价是16元.
    (3)由题意:7≤x≤16,
    W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,
    ∵7≤x≤16,
    ∴x=7时,W2有最小值,最小值=18(万元),
    答:该公司第二年的利润W2至少为18万元.
    【点睛】
    本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.
    23、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
    【解析】
    (1)证明:∵CF∥AB,
    ∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,
    ∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.
    (2)四边形BDCF是矩形.
    证明:由(1)知DB=CF,又DB∥CF,
    ∴四边形BDCF为平行四边形.
    ∵AC=BC,AD=DB,∴CD⊥AB.
    ∴四边形BDCF是矩形.
    24、(1)520千米;(2)300千米/时.
    【解析】
    试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.
    试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)
    (2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时
    依题意有:=3 解得:x=120
    经检验:x=120分式方程的解且符合题意 高铁平均速度:2.5×120=300千米/时
    答:高铁平均速度为 2.5×120=300千米/时.
    考点:分式方程的应用.
    25、(1)10;(2).
    【解析】
    (1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;
    (2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF的长度不变
    【详解】
    (1)如图1,∵四边形ABCD是矩形,

    ∴∠C=∠D=90°,
    ∴∠1+∠3=90°,
    ∵由折叠可得∠APO=∠B=90°,
    ∴∠1+∠2=90°,∴∠2=∠3,
    又∵∠D=∠C,
    ∴△OCP∽△PDA;
    ∵△OCP与△PDA的面积比为1:4,
    ∴ ,∴ CP=AD=4
    设OP=x,则CO=8﹣x,
    在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,
    解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;
    (2)作MQ∥AN,交PB于点Q,如图2,

    ∵AP=AB,MQ∥AN,
    ∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,
    ∴BN=QM.
    ∵MP=MQ,ME⊥PQ,
    ∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,
    ∴△MFQ≌△NFB.
    ∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,
    由(1)中的结论可得:PC=4,BC=8,∠C=90°,
    ∴PB=,∴EF=PB=2,
    ∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形
    26、1
    【解析】
    先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.
    【详解】
    解:原式=.
    解得,

    ∵时,无意义,
    ∴取.
    当时,原式=.
    27、(1)直线l与⊙O相切;(2)证明见解析;(3).
    【解析】
    试题分析:(1)连接OE、OB、OC.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;
    (2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;
    (3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.
    试题解析:(1)直线l与⊙O相切.理由如下:
    如图1所示:连接OE、OB、OC.

    ∵AE平分∠BAC,
    ∴∠BAE=∠CAE.
    ∴.
    ∴∠BOE=∠COE.
    又∵OB=OC,
    ∴OE⊥BC.
    ∵l∥BC,
    ∴OE⊥l.
    ∴直线l与⊙O相切.
    (2)∵BF平分∠ABC,
    ∴∠ABF=∠CBF.
    又∵∠CBE=∠CAE=∠BAE,
    ∴∠CBE+∠CBF=∠BAE+∠ABF.
    又∵∠EFB=∠BAE+∠ABF,
    ∴∠EBF=∠EFB.
    ∴BE=EF.
    (3)由(2)得BE=EF=DE+DF=1.
    ∵∠DBE=∠BAE,∠DEB=∠BEA,
    ∴△BED∽△AEB.
    ∴,即,解得;AE=,
    ∴AF=AE﹣EF=﹣1=.
    考点:圆的综合题.

    相关试卷

    2022年文山市重点中学中考数学考试模拟冲刺卷含解析: 这是一份2022年文山市重点中学中考数学考试模拟冲刺卷含解析,共17页。

    2022年北海市重点中学中考数学考试模拟冲刺卷含解析: 这是一份2022年北海市重点中学中考数学考试模拟冲刺卷含解析,共16页。试卷主要包含了估算的值是在,当函数y=等内容,欢迎下载使用。

    2022届内蒙古重点中学中考数学考试模拟冲刺卷含解析: 这是一份2022届内蒙古重点中学中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map