开学活动
搜索
    上传资料 赚现金

    2022届山东省临朐县重点名校中考五模数学试题含解析

    2022届山东省临朐县重点名校中考五模数学试题含解析第1页
    2022届山东省临朐县重点名校中考五模数学试题含解析第2页
    2022届山东省临朐县重点名校中考五模数学试题含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省临朐县重点名校中考五模数学试题含解析

    展开

    这是一份2022届山东省临朐县重点名校中考五模数学试题含解析,共25页。试卷主要包含了如图,点A,B在双曲线y=,四根长度分别为3,4,6,,对于一组统计数据等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列命题是真命题的是( )
    A.如实数a,b满足a2=b2,则a=b
    B.若实数a,b满足a<0,b<0,则ab<0
    C.“购买1张彩票就中奖”是不可能事件
    D.三角形的三个内角中最多有一个钝角
    2.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )
    A.1种 B.2种 C.3种 D.6种
    3.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
    ①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是(  )

    A.2 B.3 C.4 D.5
    4.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于(  )

    A. B.2 C.4 D.3
    5.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )
    A. B.
    C. D.
    6.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则( ).
    A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10
    C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为16
    7.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有( )

    A.4 个 B.3 个 C.2 个 D.1 个
    8.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )

    A. B. C. D.
    9.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )

    A. B. C. D.
    10.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )
    A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如果不等式无解,则a的取值范围是 ________
    12.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)

    13.不等式组的解是____.
    14.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR 的周长的最小值为_________ .

    15.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.

    16.分解因式:a2b+4ab+4b=______.
    三、解答题(共8题,共72分)
    17.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
    18.(8分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.

    19.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
    20.(8分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)

    21.(8分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.

    小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:
    x/cm
    0
    1
    2
    3
    4
    5
    6
    y1/cm
    0
    0.78
    1.76
    2.85
    3.98
    4.95
    4.47
    y2/cm
    4
    4.69
    5.26

    5.96
    5.94
    4.47
    (2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:
    ①连接BE,则BE的长约为   cm.
    ②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为   cm.
    22.(10分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.

    (1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   ;
    (1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.
    请从下列A、B两题中任选一题作答,我选择   题.
    A:①求线段AD的长;
    ②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
    B:①求线段DE的长;
    ②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    23.(12分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
    (1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
    (2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.

    24.综合与探究:
    如图,已知在△ABC 中,AB=AC,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上.
    (1)求二次函数的表达式;
    (2)求点 A,B 的坐标;
    (3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断
    B. 同号相乘为正,异号相乘为负,即可判断
    C. “购买1张彩票就中奖”是随机事件即可判断
    D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断
    【详解】
    如实数a,b满足a2=b2,则a=±b,A是假命题;
    数a,b满足a<0,b<0,则ab>0,B是假命题;
    若实“购买1张彩票就中奖”是随机事件,C是假命题;
    三角形的三个内角中最多有一个钝角,D是真命题;
    故选:D
    【点睛】
    本题考查了命题与定理,根据实际判断是解题的关键
    2、C
    【解析】
    试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C.
    考点:正方体相对两个面上的文字.
    3、D
    【解析】
    ①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
    ②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
    ③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
    ④根据三角形中位线定理可作判断;
    ⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
    【详解】
    ①∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,∠ABC=∠ADC=60°,
    ∴∠DAE=∠BEA,
    ∴∠BAE=∠BEA,
    ∴AB=BE=1,
    ∴△ABE是等边三角形,
    ∴AE=BE=1,
    ∵BC=2,
    ∴EC=1,
    ∴AE=EC,
    ∴∠EAC=∠ACE,
    ∵∠AEB=∠EAC+∠ACE=60°,
    ∴∠ACE=30°,
    ∵AD∥BC,
    ∴∠CAD=∠ACE=30°,
    故①正确;
    ②∵BE=EC,OA=OC,
    ∴OE=AB=,OE∥AB,
    ∴∠EOC=∠BAC=60°+30°=90°,
    Rt△EOC中,OC=,
    ∵四边形ABCD是平行四边形,
    ∴∠BCD=∠BAD=120°,
    ∴∠ACB=30°,
    ∴∠ACD=90°,
    Rt△OCD中,OD=,
    ∴BD=2OD=,故②正确;
    ③由②知:∠BAC=90°,
    ∴S▱ABCD=AB•AC,
    故③正确;
    ④由②知:OE是△ABC的中位线,
    又AB=BC,BC=AD,
    ∴OE=AB=AD,故④正确;
    ⑤∵四边形ABCD是平行四边形,
    ∴OA=OC=,
    ∴S△AOE=S△EOC=OE•OC=××,
    ∵OE∥AB,
    ∴,
    ∴,
    ∴S△AOP= S△AOE==,故⑤正确;
    本题正确的有:①②③④⑤,5个,
    故选D.
    【点睛】
    本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
    4、B
    【解析】
    【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.
    【详解】点C在双曲线y=上,AC∥y轴,BC∥x轴,
    设C(a,),则B(3a,),A(a,),
    ∵AC=BC,
    ∴﹣=3a﹣a,
    解得a=1,(负值已舍去)
    ∴C(1,1),B(3,1),A(1,3),
    ∴AC=BC=2,
    ∴Rt△ABC中,AB=2,
    故选B.
    【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    5、C
    【解析】
    试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.
    考点:二次函数图象与几何变换.
    6、D
    【解析】
    首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
    【详解】
    解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,
    由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.
    ①当三边为3、4、1时,其周长为3+4+1=13;
    ②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;
    ③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;
    ④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;
    综上所述,三角形周长最小为11,最大为11,
    故选:D.
    【点睛】
    本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.
    7、C
    【解析】
    由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知 HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据 SAS 推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH 不相似,即可判断④.
    【详解】
    解:∵四边形 ABCD 是正方形,
    ∴AB=BC=CD,
    ∵AG=GE,
    ∴BG=BE,
    ∴∠BEG=45°,
    ∴∠BEA>45°,
    ∵∠AEF=90°,
    ∴∠HEC<45°,
    ∴HC<EC,
    ∴CD﹣CH>BC﹣CE,即 DH>BE,故①错误;
    ∵BG=BE,∠B=90°,
    ∴∠BGE=∠BEG=45°,
    ∴∠AGE=135°,
    ∴∠GAE+∠AEG=45°,
    ∵AE⊥EF,
    ∴∠AEF=90°,
    ∵∠BEG=45°,
    ∴∠AEG+∠FEC=45°,
    ∴∠GAE=∠FEC,
    在△GAE 和△CEF 中,
    ∵AG=CE,
    ∠GAE=∠CEF,
    AE=EF,
    ∴△GAE≌△CEF(SAS)),
    ∴②正确;
    ∴∠AGE=∠ECF=135°,
    ∴∠FCD=135°﹣90°=45°,
    ∴③正确;
    ∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,
    ∴∠FEC<45°,
    ∴△GBE 和△ECH 不相似,
    ∴④错误;
    故选:C.
    【点睛】
    本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.
    8、C
    【解析】
    根据各点在数轴上位置即可得出结论.
    【详解】
    由图可知,b

    相关试卷

    2023年山东省潍坊市临朐县等五地中考数学一模试卷(含解析):

    这是一份2023年山东省潍坊市临朐县等五地中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省潍坊市临朐县等五地中考数学一模试卷(含解析):

    这是一份2023年山东省潍坊市临朐县等五地中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022年山东省烟台市重点名校中考数学模试卷含解析:

    这是一份2022年山东省烟台市重点名校中考数学模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,用一根长为a,已知等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map