2022届内蒙古乌拉特前旗第三中学中考适应性考试数学试题含解析
展开1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为( )
A.﹣2B.4C.﹣4D.2
2.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
3.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )
A.B.C.D.
4.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cmB.5.4 cmC.3.6 cmD.0.6 cm
5.如图所示是放置在正方形网格中的一个 ,则的值为( )
A.B.C.D.
6.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )
A.图2B.图1与图2C.图1与图3D.图2与图3
7.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )
A.和B.谐C.凉D.山
8.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=( )
A.6 B.8 C.10 D.12
9.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是( )
A.B.
C.D.
10.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是( )
A.B.
C.D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知a,b为两个连续的整数,且a<<b,则ba=_____.
12.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.
13.使分式的值为0,这时x=_____.
14.计算(﹣3)+(﹣9)的结果为______.
15.如图,AB为⊙O的直径,BC为⊙O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且∠AED=27°,则∠BCD的度数为_______.
16.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.
三、解答题(共8题,共72分)
17.(8分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)
18.(8分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点.
求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点.
①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围.
19.(8分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.
请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.
20.(8分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
(I)本次随机抽样调查的学生人数为 ,图①中的m的值为 ;
(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
21.(8分)如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.
22.(10分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?
23.(12分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:
(1)根据上表中的数据,将下表补充完整:
(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.
24.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
故选C.
考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.
2、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
3、B
【解析】
根据轴对称图形的概念对各选项分析判断即可得出答案.
【详解】
A.不是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项正确;
C.不是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项错误.
故选B.
4、B
【解析】
【分析】由已知可证△ABO∽CDO,故 ,即.
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
5、D
【解析】
首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.
【详解】
解:过点A向CB引垂线,与CB交于D,
△ABD是直角三角形,
∵BD=4,AD=2,
∴tan∠ABC=
故选:D.
【点睛】
此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
6、C
【解析】
【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
【详解】图1中,根据作图痕迹可知AD是角平分线;
图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
∴∠3=∠4,
∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
7、D
【解析】
分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.
详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.
故选:D.
点睛:注意正方体的空间图形,从相对面入手,分析及解答问题.
8、C
【解析】
试题分析:根据根与系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.
解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,
∴x1+x2=2,x1•x2=﹣3,
∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=1.
故选C.
9、B
【解析】
根据题意找到从左面看得到的平面图形即可.
【详解】
这个立体图形的左视图是,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.
10、B
【解析】
首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
【详解】
设学校购买文学类图书平均每本书的价格是x元,可得:
故选B.
【点睛】
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.
【详解】
解:∵a,b为两个连续的整数,且a<<b,
∴a=2,b=3,
∴ba=32=1.
故答案为1.
【点睛】
此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,
12、
【解析】
根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.
【详解】
根据图示可得,
故答案是:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.
13、1
【解析】
试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
答案为1.
考点:分式方程的解法
14、-1
【解析】
试题分析:利用同号两数相加的法则计算即可得原式=﹣(3+9)=﹣1,
故答案为﹣1.
15、117°
【解析】
连接AD,BD,利用圆周角定理解答即可.
【详解】
连接AD,BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠AED=27°,
∴∠DBA=27°,
∴∠DAB=90°-27°=63°,
∴∠DCB=180°-63°=117°,
故答案为117°
【点睛】
此题考查圆周角定理,关键是根据圆周角定理解答.
16、60°
【解析】
试题解析:∵∠ACB=90°,∠ABC=30°,
∴∠A=90°-30°=60°,
∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
∴AC=A′C,
∴△A′AC是等边三角形,
∴∠ACA′=60°,
∴旋转角为60°.
故答案为60°.
三、解答题(共8题,共72分)
17、见解析
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.
【详解】
解:如图,点E即为所求作的点.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.
18、(1),;(2)① 3,② .
【解析】
(1)将代入可求出a,将A点坐标代入可求出k;
(2)①根据题意画出函数图像,可直接写出区域内的整点个数;
②求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.
【详解】
解:(1)将代入得a=4
将代入,得
(2)①区域内的整点个数是3
②∵直线是过点且平行于直线
∴直线的表达式为
当时,即线段PM上有整点
∴
【点睛】
本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.
19、(1)36 , 40, 1;(2).
【解析】
(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.
(2)画出树状图,根据概率公式求解即可.
【详解】
(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;
该班共有学生(2+1+7+4+1+1)÷10%=40人;
训练后篮球定时定点投篮平均每个人的进球数是=1,
故答案为:36,40,1.
(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:
由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)
的结果有6种,
∴P(M)==.
20、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
【解析】
(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
(II)根据众数、中位数和平均数的定义计算可得;
(III)用总人数乘以样本中5天、6天的百分比之和可得.
【详解】
解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
故答案为150、14;
(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
平均数为=3.5天;
(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
21、(1)答案见解析;(2)45°.
【解析】
(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;
(2)根据∠DBF=∠ABD﹣∠ABF计算即可;
【详解】
(1)如图所示,直线EF即为所求;
(2)∵四边形ABCD是菱形,
∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,
∴∠ABC=150°,∠ABC+∠C=180°,
∴∠C=∠A=30°.
∵EF垂直平分线段AB,
∴AF=FB,
∴∠A=∠FBA=30°,
∴∠DBF=∠ABD﹣∠FBE=45°.
【点睛】
本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.
22、(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套.
【解析】
试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.
试题解析:
(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.
根据题意得:=2×,
解得:x=7.5,
经检验,x=7.5为分式方程的解,
∴x+2.5=1.
答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元.
(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,
根据题意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,
解得:a>16,
∵a为正整数,
∴a取最小值2.
答:最少购进A品牌工具套装2套.
点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.
23、(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.
【解析】
(1)利用平均数、众数、中位数的定义和方差的计算公式求解;
(2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.
【详解】
(1)甲的平均数;
乙的众数为9;
丙的中位数为9,
丙的方差;
故答案为8.2;9;9;6.4;
(2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.
【点睛】
本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.
24、(1)
(2)﹣1<x<0或x>1.
(3)四边形OABC是平行四边形;理由见解析.
【解析】
(1)设反比例函数的解析式为(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.
(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC
【详解】
解:(1)设反比例函数的解析式为(k>0)
∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).
又∵点A在上,∴,解得k=2.,
∴反比例函数的解析式为.
(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.
(3)四边形OABC是菱形.证明如下:
∵A(﹣1,﹣2),∴.
由题意知:CB∥OA且CB=,∴CB=OA.
∴四边形OABC是平行四边形.
∵C(2,n)在上,∴.∴C(2,1).
∴.∴OC=OA.
∴平行四边形OABC是菱形.
月份
销售额
人员
第1月
第2月
第3月
第4月
第5月
甲
6
9
10
8
8
乙
5
7
8
9
9
丙
5
9
10
5
11
统计值
数值
人员
平均数(万元)
众数(万元)
中位数(万元)
方差
甲
8
8
1.76
乙
7.6
8
2.24
丙
8
5
内蒙古乌拉特前旗第六中学2022年中考一模数学试题含解析: 这是一份内蒙古乌拉特前旗第六中学2022年中考一模数学试题含解析,共25页。试卷主要包含了答题时请按要求用笔,下列运算正确的,如下图所示,该几何体的俯视图是,老师在微信群发了这样一个图等内容,欢迎下载使用。
2022届内蒙古乌拉特前旗第四中学中考数学对点突破模拟试卷含解析: 这是一份2022届内蒙古乌拉特前旗第四中学中考数学对点突破模拟试卷含解析,共26页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2022届广东省揭西县第三华侨中学中考适应性考试数学试题含解析: 这是一份2022届广东省揭西县第三华侨中学中考适应性考试数学试题含解析,共19页。试卷主要包含了一、单选题等内容,欢迎下载使用。