2022届江苏省扬州市部分区、县中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如果零上2℃记作+2℃,那么零下3℃记作( )
A.-3℃ B.-2℃ C.+3℃ D.+2℃
2.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0
A.1个 B.2个 C.3个 D.4个
3.一元二次方程x2﹣2x=0的根是( )
A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2
4.下列计算,正确的是( )
A. B.
C.3 D.
5.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )
A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣4
6.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为( )
A.2:3 B.3:2 C.4:9 D.9:4
7.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为( )
A.18 B.12 C.9 D.1
8.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是( )
A.(1,4) B.(4,3) C.(2,4) D.(4,1)
9.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()
A.30° B.40°
C.60° D.70°
10.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:x2y﹣6xy+9y=_____.
12.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.请根据上述的定义解决问题:若不等式3※x<1,则不等式的正整数解是_____.
13.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .
14.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.
15.如图,二次函数y=ax2+bx+c(a≠0)的图象与轴相交于点A、B,若其对称轴为直线x=2,则OB–OA的值为_______.
16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.
三、解答题(共8题,共72分)
17.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.
18.(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.
七年级英语口语测试成绩统计表
成绩分
等级
人数
A
12
B
m
C
n
D
9
请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上包括B 级的学生人数.
19.(8分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.
(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
20.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
21.(8分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
(1)求与的函数关系式,并写出的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
22.(10分)计算:2﹣1+|﹣|++2cos30°
23.(12分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.
24.如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
故选A.
2、A
【解析】
如图,
且图像与y轴交于点,
可知该抛物线的开口向下,即,
①当时,
故①错误.
②由图像可知,当时,
∴
∴
故②错误.
③∵
∴,
又∵,
∴,
∴,
∴,
故③错误;
④∵,,
又∵,
∴.
故④正确.
故答案选A.
【点睛】
本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.
3、C
【解析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
【详解】
方程变形得:x(x﹣1)=0,
可得x=0或x﹣1=0,
解得:x1=0,x1=1.
故选C.
【点睛】
考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.
4、B
【解析】
根据二次根式的加减法则,以及二次根式的性质逐项判断即可.
【详解】
解:∵=2,∴选项A不正确;
∵=2,∴选项B正确;
∵3﹣=2,∴选项C不正确;
∵+=3≠,∴选项D不正确.
故选B.
【点睛】
本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
5、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
【详解】
14400=1.44×1.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、C
【解析】
由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
【详解】
∵△ABC与△DEF相似,相似比为2:3,
∴这两个三角形的面积比为4:1.
故选C.
【点睛】
此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.
7、D
【解析】
过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.
【详解】
∵S2=48,∴BC=4,过A作AH∥CD交BC于H,则∠AHB=∠DCB.
∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=2,AH=CD=1.
∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.
故选D.
【点睛】
本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.
8、D
【解析】
先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.
【详解】
由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).
【点睛】
本题主要考察规律的探索,注意观察规律是解题的关键.
9、A
【解析】
∵AB∥CD,∠A=70°,
∴∠1=∠A=70°,
∵∠1=∠C+∠E,∠C=40°,
∴∠E=∠1﹣∠C=70°﹣40°=30°.
故选A.
10、A
【解析】
分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
详解:
由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故选A.
点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、y(x﹣3)2
【解析】
本题考查因式分解.
解答:.
12、2
【解析】
【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.
【详解】∵3※x=3x﹣3+x﹣2<2,
∴x<,
∵x为正整数,
∴x=2,
故答案为:2.
【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.
13、
【解析】
试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=.
考点:概率的计算.
14、1
【解析】
∵MN∥BC,
∴△AMN∽△ABC,
∴,即,
∴MN=1.
故答案为1.
15、4
【解析】
试题分析:设OB的长度为x,则根据二次函数的对称性可得:点B的坐标为(x+2,0),点A的坐标为(2-x,0),则OB-OA=x+2-(x-2)=4.
点睛:本题主要考查的就是二次函数的性质.如果二次函数与x轴的两个交点坐标为(,0)和(,0),则函数的对称轴为直线:x=.在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x的正半轴,则点的横坐标就是线段的长度,如果点在x的负半轴,则点的横坐标的相反数就是线段的长度.
16、1
【解析】
解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.
点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
三、解答题(共8题,共72分)
17、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.
【解析】
试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;
(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.
试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,
根据题意得:700(1+x)2=1183,
解得:x1=0.3=30%,x2=﹣2.3(舍去),
答:这两年该市推行绿色建筑面积的年平均增长率为30%;
(2)根据题意得:1183×(1+30%)=1537.9(万平方米),
∵1537.9>1500,
∴2017年该市能完成计划目标.
【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.
18、 (1)60人;(2)144°;(3)288人.
【解析】
等级人数除以其所占百分比即可得;
先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;
总人数乘以A、B等级百分比之和即可得.
【详解】
解:本次被抽取参加英语口语测试的学生共有人;
级所占百分比为,
级对应的百分比为,
则扇形统计图中 C 级的圆心角度数为;
人,
答:估计英语口语达到 B级以上包括B 级的学生人数为288人.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体.
19、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
【解析】
(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
【详解】
(Ⅰ)设OD为x,
∵点A(3,0),点B(0,),
∴AO=3,BO=
∴AB=6
∵折叠
∴BD=DA
在Rt△ADO中,OA1+OD1=DA1.
∴9+OD1=(﹣OD)1.
∴OD=
∴D(0,)
(Ⅱ)∵折叠
∴∠BDC=∠CDO=90°
∴CD∥OA
∴且BD=AC,
∴
∴BD=﹣18
∴OD=﹣(﹣18)=18﹣
∵tan∠ABO=,
∴∠ABC=30°,即∠BAO=60°
∵tan∠ABO=,
∴CD=11﹣6
∴D(11﹣6,11﹣18)
(Ⅲ)如图:过点C作CE⊥AO于E
∵CE⊥AO
∴OE=1,且AO=3
∴AE=1,
∵CE⊥AO,∠CAE=60°
∴∠ACE=30°且CE⊥AO
∴AC=1,CE=
∵BC=AB﹣AC
∴BC=6﹣1=4
若点B'落在A点右边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=1+
∴B'(1+,0)
若点B'落在A点左边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=﹣1
∴B'(1﹣,0)
综上所述:B'(1+,0),(1﹣,0)
【点睛】
本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
20、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
21、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.
【解析】
【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;
(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;
(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.
【详解】(1)设 ,将点(10,200)、(15,150)分别代入,
则,解得 ,
∴,
∵蜜柚销售不会亏本,∴,
又,∴ ,∴,
∴ ;
(2) 设利润为元,
则
=
=,
∴ 当 时, 最大为1210,
∴ 定价为19元时,利润最大,最大利润是1210元;
(3) 当 时,,
110×40=4400<4800,
∴不能销售完这批蜜柚.
【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.
22、+4.
【解析】
原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.
【详解】
原式=++2+2×=+4.
【点睛】
本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.
23、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.
【解析】
【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;
(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;
(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出结论.
【详解】(1)如图,连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
∵∠BOD=2∠BAD,
∴∠BOD=∠BAC=90°,
∵DP∥BC,
∴∠ODP=∠BOD=90°,
∴PD⊥OD,
∵OD是⊙O半径,
∴PD是⊙O的切线;
(2)∵PD∥BC,
∴∠ACB=∠P,
∵∠ACB=∠ADB,
∴∠ADB=∠P,
∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
∴∠DCP=∠ABD,
∴△ABD∽△DCP;
(3)∵BC是⊙O的直径,
∴∠BDC=∠BAC=90°,
在Rt△ABC中,BC==13cm,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴BD=CD,
在Rt△BCD中,BD2+CD2=BC2,
∴BD=CD=BC=,
∵△ABD∽△DCP,
∴,
∴,
∴CP=16.9cm.
【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.
24、证明见解析
【解析】
分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.
详解:证明:在▱ABCD中,,
,又 ,≌,
,,又,
四边形AGCH为平行四边形, .
点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.
江苏省扬州市部分区、县达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省扬州市部分区、县达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,的值为,一、单选题等内容,欢迎下载使用。
江苏省扬州市部分区、县2021-2022学年中考试题猜想数学试卷含解析: 这是一份江苏省扬州市部分区、县2021-2022学年中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,计算÷9的值是等内容,欢迎下载使用。
江苏省扬州市教育科研究院2022年中考数学适应性模拟试题含解析: 这是一份江苏省扬州市教育科研究院2022年中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,-的立方根是,《语文课程标准》规定,图为小明和小红两人的解题过程等内容,欢迎下载使用。