2022届江苏省南京市鼓楼区中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ).
A. B. C. D.
2.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
A.k>- B.k>-且 C.k<- D.k-且
3.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
A.-1 B.- C. D.–π
4.若关于x、y的方程组有实数解,则实数k的取值范围是( )
A.k>4 B.k<4 C.k≤4 D.k≥4
5.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是( )
A. B.
C. D.
6.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为( )
A.800sinα米 B.800tanα米 C.米 D.米
7.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是( )
A.①②③ B.①③④ C.①③⑤ D.②④⑤
8.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1
A.t≥–2 B.–2≤t<7
C.–2≤t<2 D.2
①S△ODB=S△OCA;
②四边形OAMB的面积不变;
③当点A是MC的中点时,则点B是MD的中点.
其中正确结论的个数是( )
A.0 B.1 C.2 D.3
10.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
一个圆锥(接缝处不重叠),那么这个圆锥的高为
A.6cm B.cm C.8cm D.cm
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.
(1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.
(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =__.
12.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.
13.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_____.
14.若a+b=3,ab=2,则a2+b2=_____.
15.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.
16.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽(A)豆沙粽(B)小枣粽(C)蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
分析图中信息,本次抽样调查中喜爱小枣粽的人数为________;若该社区有10000人,估计爱吃鲜肉粽的人数约为________.
三、解答题(共8题,共72分)
17.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.
18.(8分)(1)(﹣2)2+2sin 45°﹣
(2)解不等式组,并将其解集在如图所示的数轴上表示出来.
19.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.
20.(8分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;
(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.
21.(8分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.
22.(10分)如图,在等边中,,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm.
小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
0
1
2
3
4
5
___
0
0
说明:补全表格上相关数值保留一位小数
建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.
23.(12分)如图,在平面直角坐标系xOy中,直线与函数的图象的两个交点分别为A(1,5),B.
(1)求,的值;
(2)过点P(n,0)作x轴的垂线,与直线和函数的图象的交点分别为点M,N,当点M在点N下方时,写出n的取值范围.
24.如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
考点:3.线段垂直平分线性质;3.轴对称作图.
2、B
【解析】
在与一元二次方程有关的求值问题中,必须满足下列条件:
(1)二次项系数不为零;
(2)在有两个实数根下必须满足△=b2-4ac≥1.
【详解】
由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.
因此可求得k>且k≠1.
故选B.
【点睛】
本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.
3、B
【解析】
根据两个负数,绝对值大的反而小比较.
【详解】
解:∵− >−1>− >−π,
∴负数中最大的是−.
故选:B.
【点睛】
本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
4、C
【解析】
利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.
【详解】
解:∵xy=k,x+y=4,
∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.
解不等式得
故选:C.
【点睛】
本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.
5、A
【解析】
根据题意,将运动过程分成两段.分段讨论求出解析式即可.
【详解】
∵BD=2,∠B=60°,
∴点D到AB距离为,
当0≤x≤2时,
y=;
当2≤x≤4时,y=.
根据函数解析式,A符合条件.
故选A.
【点睛】
本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
6、D
【解析】
【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.
【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,
∴tanα=,
∴AB=,
故选D.
【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
7、C
【解析】
试题解析:∵抛物线的顶点坐标A(1,3),
∴抛物线的对称轴为直线x=-=1,
∴2a+b=0,所以①正确;
∵抛物线开口向下,
∴a<0,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以②错误;
∵抛物线的顶点坐标A(1,3),
∴x=1时,二次函数有最大值,
∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
∵抛物线与x轴的一个交点为(4,0)
而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
∴当1<x<4时,y2<y1,所以⑤正确.
故选C.
考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.
8、B
【解析】
利用对称性方程求出b得到抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x<4时对应的函数值的范围为﹣2≤y<7,由于关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,然后利用函数图象可得到t的范围.
【详解】
抛物线的对称轴为直线x=﹣=1,解得b=﹣2,
∴抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),
当x=﹣1时,y=x2﹣2x﹣1=2;当x=4时,y=x2﹣2x﹣1=7,
当﹣1<x<4时,﹣2≤y<7,
而关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,
∴﹣2≤t<7,
故选B.
【点睛】
本题考查了二次函数的性质、抛物线与x轴的交点、二次函数与一元二次方程,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.
9、D
【解析】
根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
【详解】
①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
故答案选D.
考点:反比例系数的几何意义.
10、B
【解析】
试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,
∴留下的扇形的弧长==12π,
根据底面圆的周长等于扇形弧长,
∴圆锥的底面半径r==6cm,
∴圆锥的高为=3cm
故选B.
考点: 圆锥的计算.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4 ﹣
【解析】
解:(1)当a=1时,抛物线L的解析式为:y=x1,
当y=1时,1=x1,
∴x=±,
∵B在第一象限,
∴A(﹣,1),B(,1),
∴AB=1,
∵向右平移抛物线L使该抛物线过点B,
∴AB=BC=1,
∴AC=4;
(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,
设OK=t,则AB=BC=1t,
∴B(t,at1),
根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,
∴O(0,0),G(4t,0),
设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),
y=a3x(x﹣4t),
∵该抛物线过点B(t,at1),
∴at1=a3t(t﹣4t),
∵t≠0,
∴a=﹣3a3,
∴=﹣,
故答案为(1)4;(1)﹣.
点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.
12、6
【解析】
根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48 ,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积 =CD·PD可得.
【详解】
解:∵ 在△ABC中,∠ACB=90°,∠A=45°,
∴∠B=45°,
∴AC=BC,
∵CD⊥AB ,
∴AD=BD=CD=AB,
∵AP2-PB2=48 ,
∴(AP+PB)(AP-PB)=48,
∴AB(AD+PD-BD+DP)=48,
∴AB·2PD=48,
∴2CD·2PD=48,
∴CD·PD=12,
∴ △PCD的面积=CD·PD=6.
故答案为6.
【点睛】
此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一
13、2
【解析】
试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出
考点:不等式的性质
点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键
14、1
【解析】
根据a2+b2=(a+b)2-2ab,代入计算即可.
【详解】
∵a+b=3,ab=2,
∴a2+b2=(a+b)2﹣2ab=9﹣4=1.
故答案为:1.
【点睛】
本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.
15、1.
【解析】
由题意,得
b−1=−1,1a=−4,
解得b=−1,a=−1,
∴ab=(−1) ×(−1)=1,
故答案为1.
16、120人, 3000人
【解析】
根据B的人数除以占的百分比得到调查的总人数,再用总人数减去A、B、D的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果.
【详解】
调查的总人数为:60÷10%=600(人),本次抽样调查中喜爱小枣粽的人数为:600﹣180﹣60﹣240=120(人);
若该社区有10000人,估计爱吃鲜肉粽的人数约为:100003000(人).
故答案为120人;3000人.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.
三、解答题(共8题,共72分)
17、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.
【解析】
(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;
(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;
(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.
【详解】
(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,
补全统计图如图;
(2)根据条形统计图,7℃出现的频率最高,为3天,
所以,众数是7;
按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,
所以,中位数为(7+8)=7.5;
平均数为(6×2+7×3+8×2+10×2+11)=×80=8,
所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],
=(8+3+0+8+9),
=×28,
=2.8;
(3)6℃的度数,×360°=72°,
7℃的度数,×360°=108°,
8℃的度数,×360°=72°,
10℃的度数,×360°=72°,
11℃的度数,×360°=36°,
作出扇形统计图如图所示.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.
18、(1)4﹣5;﹣<x≤2,在数轴上表示见解析
【解析】
(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;
(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.
【详解】
解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;
(2),
解①得:x>﹣,
解②得:x≤2,
不等式组的解集为:﹣<x≤2,
在数轴上表示为:
.
【点睛】
此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.
19、见解析
【解析】
连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=CF,可证得结论.
【详解】
证明:连接AF,
∵EF为AB的垂直平分线,
∴AF=BF,
又AB=AC,∠BAC=120°,
∴∠B=∠C=∠BAF=30°,
∴∠FAC=90°,
∴AF=FC,
∴FC=2BF.
【点睛】
本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
20、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;
(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
【详解】
(1)针对于抛物线,
令x=0,则,
∴,
令y=0,则,
解得,x=1或x=3,
∴,
综上所述:,,;
(2)由(1)知,,,
∵BM=FM,
∴,
∵,
∴直线AC的解析式为:,
联立抛物线解析式得:,
解得:或,
∴,
如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
∴,
解得:,
∴,
过H作l∥AC,
∴直线l的解析式为,
联立抛物线解析式,解得,
∴,
即:在直线AC下方的抛物线上不存在点P,使;
(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
设,,直线DE的解析式为,
联立直线DE的解析式与抛物线解析式联立,得,
∴,,
∵DG⊥x轴,
∴DG∥OM,
∴,
∴,
即,
∴,同理可得
∴,
∴,
即,
∴,
∴直线DE的解析式为,
∴直线DE必经过一定点.
【点睛】
本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
21、(1);(2)(0,)或(0,4).
【解析】
试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
(2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
(2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
考点:二次函数综合题.
22、(1)1.1;(2)见解析;(3).
【解析】
(1)(2)需要认真按题目要求测量,描点作图;
(3)线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.
【详解】
根据题意测量约
故应填:
根据题意画图:
当线段BD是线段CE长的2倍时,得到图象,该图象与中图象的交点即为所求情况,测量得BD长约.
故答案为(1)1.1;(2)见解析;(3)1.7.
【点睛】
本题考查函数作图和函数图象实际意义的理解,在中,考查学生由数量关系得到函数关系的转化思想.
23、(1),;(2)0<n<1或者n>1.
【解析】
(1)利用待定系数法即可解决问题;
(2)利用图象法即可解决问题;
【详解】
解:(1)∵A(1,1)在直线上,
∴,
∵A(1,1)在的图象上,
∴.
(2)观察图象可知,满足条件的n的值为:0<n<1或者n>1.
【点睛】
此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解.
24、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.
【解析】
(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;
(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.
【详解】
解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,
当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),
将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
解得:,则一次函数解析式为y=x+2;
(2)由题意知BC=2,则△ACB的面积=×2×1=1.
【点睛】
本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.
2023年江苏省南京市鼓楼区树人学校中考三模数学试题(含解析): 这是一份2023年江苏省南京市鼓楼区树人学校中考三模数学试题(含解析),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年江苏省南京市建邺区中考数学全真模拟试题含解析: 这是一份2022年江苏省南京市建邺区中考数学全真模拟试题含解析,共20页。试卷主要包含了答题时请按要求用笔,若与 互为相反数,则x的值是,1﹣的相反数是,下列运算结果正确的是等内容,欢迎下载使用。
2022年江苏省南京市南师附中江宁分校中考数学全真模拟试卷含解析: 这是一份2022年江苏省南京市南师附中江宁分校中考数学全真模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列等式正确的是,下列运算正确的是等内容,欢迎下载使用。