2022届湖南省怀化市靖州苗族侗族自治县市级名校中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知反比例函数,下列结论不正确的是( )
A.图象必经过点(﹣1,2) B.y随x的增大而增大
C.图象在第二、四象限内 D.若,则
2.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b
4.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )
A. B. C. D.
5.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )
A.141° B.144° C.147° D.150°
6.如图,,且.、是上两点,,.若,,,则的长为( )
A. B. C. D.
7.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是( ).
A. B.- C.- D.
8.在中,,,,则的值是( )
A. B. C. D.
9.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为( )
A. B.2 C. D.
10.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和( )
A.增加(n﹣2)×180° B.减小(n﹣2)×180°
C.增加(n﹣1)×180° D.没有改变
11.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )
A.3cm,4cm,8cm B.8cm,7cm,15cm
C.13cm,12cm,20cm D.5cm,5cm,11cm
12.在数轴上表示不等式组的解集,正确的是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.
14.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.
15.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为 .
16.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.
17.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.
18.已知三个数据3,x+3,3﹣x的方差为,则x=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)
(1)求抛物线的表达式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.
20.(6分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.
21.(6分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.
(1)求证:四边形ABCD是平行四边形;
(2)直接写出图中所有相等的线段(AE=CF除外).
22.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.
23.(8分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
(1)A,B 两处粮仓原有存粮各多少吨?
(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.
24.(10分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
25.(10分)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
26.(12分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.
(1)求证:;
(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果与相似,求BP的长.
27.(12分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.
(1)求抛物线的函数表达式;
(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;
(3)若在轴上有且只有一点,使,求的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
C、命题正确;
D、命题正确.
故选B.
考点:反比例函数的性质
2、D
【解析】
由抛物线的开口向下知a<0,
与y轴的交点为在y轴的正半轴上,得c>0,
对称轴为x= <1,∵a<0,∴2a+b<0,
而抛物线与x轴有两个交点,∴ −4ac>0,
当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.
∵ >2,∴4ac−<8a,∴+8a>4ac,
∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.
由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,
上面两个相加得到6a<−6,∴a<−1.故选D.
点睛:本题考查了二次函数图象与系数的关系,二次函数 中,a的符号由抛物线的开口方向决定;c的符号由抛物线与y轴交点的位置决定;b的符号由对称轴位置与a的符号决定;抛物线与x轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.
3、D
【解析】
试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;
B.如图所示:﹣3<a<﹣2,故此选项错误;
C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;
D.由选项C可得,此选项正确.
故选D.
考点:实数与数轴
4、C
【解析】
过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.
【详解】
过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,
∵⊙O的周长等于6πcm,
∴2πr=6π,
解得:r=3,
∴⊙O的半径为3cm,即OA=3cm,
∵六边形ABCDEF是正六边形,
∴∠AOB=×360°=60°,OA=OB,
∴△OAB是等边三角形,
∴AB=OA=3cm,
∵OH⊥AB,
∴AH=AB,
∴AB=OA=3cm,
∴AH=cm,OH==cm,
∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).
故选C.
【点睛】
此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.
5、B
【解析】
先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
【详解】
(6﹣2)×180°÷6=120°,
(5﹣2)×180°÷5=108°,
∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
=720°﹣360°﹣216°
=144°,
故选B.
【点睛】
本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
6、D
【解析】
分析:
详解:如图,
∵AB⊥CD,CE⊥AD,
∴∠1=∠2,
又∵∠3=∠4,
∴180°-∠1-∠4=180°-∠2-∠3,
即∠A=∠C.
∵BF⊥AD,
∴∠CED=∠BFD=90°,
∵AB=CD,
∴△ABF≌△CDE,
∴AF=CE=a,ED=BF=b,
又∵EF=c,
∴AD=a+b-c.
故选:D.
点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
7、C
【解析】
分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.
详解:∵α、β是一元二次方程3x2+2x-9=0的两根,
∴α+β=-,αβ=-3,
∴===.
故选C.
点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.
8、D
【解析】
首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.
【详解】
∵∠C=90°,BC=1,AB=4,
∴,
∴,
故选:D.
【点睛】
本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.
9、C
【解析】
根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
【详解】
如图所示,
单位圆的半径为1,则其内接正六边形ABCDEF中,
△AOB是边长为1的正三角形,
所以正六边形ABCDEF的面积为
S6=6××1×1×sin60°=.
故选C.
【点睛】
本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
10、D
【解析】
根据多边形的外角和等于360°,与边数无关即可解答.
【详解】
∵多边形的外角和等于360°,与边数无关,
∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.
故选D.
【点睛】
本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.
11、C
【解析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
A、3+4<8,不能组成三角形;
B、8+7=15,不能组成三角形;
C、13+12>20,能够组成三角形;
D、5+5<11,不能组成三角形.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.
12、C
【解析】
解不等式组,再将解集在数轴上正确表示出来即可
【详解】
解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集为﹣1≤x<2,故选C.
【点睛】
本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.
【详解】
∵点B的坐标为(2,3),点C为OB的中点,
∴C点坐标为(1,1.5),
∴k=1×1.5=1.5,即反比例函数解析式为y=,
∴S△OAD=×1.5=.
故答案为:.
【点睛】
本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .
14、
【解析】
由题意易得四边形ABFE是正方形,
设AB=1,CF=x,则有BC=x+1,CD=1,
∵四边形CDEF和矩形ABCD相似,
∴CD:BC=FC:CD,
即1:(x+1)=x:1,
∴x=或x=(舍去),
∴ =,
故答案为.
【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.
15、1.
【解析】
试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1.
考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.
16、同位角相等,两直线平行.
【解析】
试题解析:利用三角板中两个60°相等,可判定平行
考点:平行线的判定
17、143549
【解析】
根据题中密码规律确定所求即可.
【详解】
532=5×3×10000+5×2×100+5×(2+3)=151025
924=9×2×10000+9×4×100+9×(2+4)=183654,
863=8×6×10000+8×3×100+8×(3+6)=482472,
∴725=7×2×10000+7×5×100+7×(2+5)=143549.
故答案为:143549
【点睛】
本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.
18、±1
【解析】
先由平均数的计算公式求出这组数据的平均数,再代入方差公式进行计算,即可求出x的值.
【详解】
解:这三个数的平均数是:(3+x+3+3-x)÷3=3,
则方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,
解得:x=±1;
故答案为:±1.
【点睛】
本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)y=﹣x2+4x﹣3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
【解析】
(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;
(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到 •2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.
【详解】
解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;
(2)设P(t,﹣t2+4t﹣3),
因为S△PAB=1,AB=3﹣1=2,
所以•2•|﹣t2+4t﹣3|=1,
当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);
当﹣t2+4t﹣3=﹣1时,t1=2+,t2=2﹣,此时P点坐标为(2+,﹣1)或(2﹣,﹣1),
所以满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
【点睛】
本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
20、证明见解析.
【解析】
想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.
【详解】
解:∵AF=DC,
∴AF+FC=FC+CD,
∴AC=FD,
在△ABC 和△DEF 中,
∴△ABC≌△DEF(AAS)
∴BC=EF.
【点睛】
本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21、(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.
【解析】
整体分析:
(1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.
解:(1)证明:∵AD∥BC,DE∥BF,
∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.
在△ADE和△CBF中,,
∴△ADE≌△CBF,∴AD=BC,
∴四边形ABCD是平行四边形.
(2)AD=BC,EC=AF,ED=BF,AB=DC.
理由如下:
∵△ADE≌△CBF,∴AD=BC,ED=BF.
∵AE=CF,∴EC=AF.
∵四边形ABCD是平行四边形,∴AB=DC.
22、证明见解析
【解析】
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
∵AE=CF
∴AD-AE=BC-CF
即DE=BF
∴四边形BFDE是平行四边形.
23、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
【解析】
(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
(3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
【详解】
(1)设A,B两处粮仓原有存粮x,y吨
根据题意得:
解得:x=270,y=1.
答:A,B两处粮仓原有存粮分别是270,1吨.
(2)A粮仓支援C粮仓的粮食是×270=162(吨),
B粮仓支援C粮仓的粮食是×1=72(吨),
A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
∵234>200,
∴此次调拨能满足C粮仓需求.
(3)如图,
根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
在Rt△ABC中,sin∠BAC=,
∴BC=AB•sin∠BAC=1×0.44=79.2.
∵此车最多可行驶4×35=140(千米)<2×79.2,
∴小王途中须加油才能安全回到B地.
【点睛】
求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
24、(1)520千米;(2)300千米/时.
【解析】
试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.
试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)
(2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时
依题意有:=3 解得:x=120
经检验:x=120分式方程的解且符合题意 高铁平均速度:2.5×120=300千米/时
答:高铁平均速度为 2.5×120=300千米/时.
考点:分式方程的应用.
25、(1)见解析(2)相切
【解析】
(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即
可;
(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.
【详解】
(1)如图所示:
;
(2)相切;过O点作OD⊥AC于D点,
∵CO平分∠ACB,
∴OB=OD,即d=r,
∴⊙O与直线AC相切,
【点睛】
此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,
正确利用角平分线的性质求出d=r是解题关键.
26、(1)见解析;(2);(3)当或8时,与相似.
【解析】
(1)想办法证明即可解决问题;
(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;
(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;
【详解】
(1)证明:四边形ABCD是等腰梯形,
,
,
,
,
,
,
.
(2)解:作于M,于N.则四边形是矩形.
在中,,
,
,
,
,
.
(3)解:,
,
,
相似时,与相似,
,
当时,,此时,
当时,,此时,
综上所述,当PB=5或8时,与△相似.
【点睛】
本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.
27、(1).;(2)点坐标为;.(3).
【解析】
分析:(1)根据已知列出方程组求解即可;
(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;
(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.
详解:(1)由题可得:解得,,.
二次函数解析式为:.
(2)作轴,轴,垂足分别为,则.
,,,
,解得,,.
同理,.
,
①(在下方),,
,即,.
,,.
②在上方时,直线与关于对称.
,,.
,,.
综上所述,点坐标为;.
(3)由题意可得:.
,,,即.
,,.
设的中点为,
点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.
轴,为的中点,.
,,,
,即,.
,.
点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.
辽宁省市级名校2021-2022学年中考数学五模试卷含解析: 这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。
2022年湖南省武冈市市级名校中考三模数学试题含解析: 这是一份2022年湖南省武冈市市级名校中考三模数学试题含解析,共21页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
2022届湖南省怀化市靖州苗族侗族自治县中考数学适应性模拟试题含解析: 这是一份2022届湖南省怀化市靖州苗族侗族自治县中考数学适应性模拟试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,的值是等内容,欢迎下载使用。