2022届湖南省安仁县中考数学模试卷含解析
展开
这是一份2022届湖南省安仁县中考数学模试卷含解析,共22页。试卷主要包含了下列说法正确的是,下列解方程去分母正确的是,下列命题是真命题的个数有等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.若正六边形的边长为6,则其外接圆半径为( )
A.3 B.3 C.3 D.6
2.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和( )
A.增加(n﹣2)×180° B.减小(n﹣2)×180°
C.增加(n﹣1)×180° D.没有改变
3.下列图形中,周长不是32 m的图形是( )
A. B. C. D.
4.下列说法正确的是( )
A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,,则甲的射击成绩较稳定
C.“明天降雨的概率为”,表示明天有半天都在降雨
D.了解一批电视机的使用寿命,适合用普查的方式
5.下列解方程去分母正确的是( )
A.由,得2x﹣1=3﹣3x
B.由,得2x﹣2﹣x=﹣4
C.由,得2y-15=3y
D.由,得3(y+1)=2y+6
6.下列图形中为正方体的平面展开图的是( )
A. B.
C. D.
7.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()
A. B. C. D.
8.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置( )
A.点A的左侧 B.点A点B之间
C.点B点C之间 D.点C的右侧
9.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是( )
A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3
10.下列命题是真命题的个数有( )
①菱形的对角线互相垂直;
②平分弦的直径垂直于弦;
③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
A.1个 B.2个 C.3个 D.4个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1.则这位选手五次射击环数的方差为 .
12.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .
13.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.
14.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.
15.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是 .
16.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.
三、解答题(共8题,共72分)
17.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
18.(8分)阅读下列材料:
题目:如图,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sinA、cosA表示sin2A.
19.(8分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣
20.(8分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D
(1)求证:DE是的⊙O切线;
(2)若AB=6,BG=4,求BE的长;
(3)若AB=6,CE=1.2,请直接写出AD的长.
21.(8分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
22.(10分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
(1)画出△A1B1C1
(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
(3)在(2)的条件下求BC扫过的面积.
23.(12分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
24.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
【详解】
如图为正六边形的外接圆,ABCDEF是正六边形,
∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.
所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
故选D.
【点睛】
本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
2、D
【解析】
根据多边形的外角和等于360°,与边数无关即可解答.
【详解】
∵多边形的外角和等于360°,与边数无关,
∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.
故选D.
【点睛】
本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.
3、B
【解析】
根据所给图形,分别计算出它们的周长,然后判断各选项即可.
【详解】
A. L=(6+10)×2=32,其周长为32.
B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.
C. L=(6+10)×2=32,其周长为32.
D. L=(6+10)×2=32,其周长为32.
采用排除法即可选出B
故选B.
【点睛】
此题考查多边形的周长,解题在于掌握计算公式.
4、B
【解析】
利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.
【详解】
解: A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;
B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;
C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;
D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;
故选B.
【点睛】
本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.
5、D
【解析】
根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
【详解】
A.由,得:2x﹣6=3﹣3x,此选项错误;
B.由,得:2x﹣4﹣x=﹣4,此选项错误;
C.由,得:5y﹣15=3y,此选项错误;
D.由,得:3( y+1)=2y+6,此选项正确.
故选D.
【点睛】
本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
6、C
【解析】
利用正方体及其表面展开图的特点依次判断解题.
【详解】
由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.
【点睛】
本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.
7、D
【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
【详解】
∵四边形ABCD是菱形,
∴CO=AC=3,BO=BD=,AO⊥BO,
∴.
∴.
又∵,
∴BC·AE=24,
即.
故选D.
点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
8、C
【解析】
分析:
根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.
详解:
A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;
B选项中,若原点在A、B之间,则b>0,c>0,这与b·c
相关试卷
这是一份2023年湖南省怀化市中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省常德市澧县中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省娄底市中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。