|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届湖北省襄州区毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    2022届湖北省襄州区毕业升学考试模拟卷数学卷含解析01
    2022届湖北省襄州区毕业升学考试模拟卷数学卷含解析02
    2022届湖北省襄州区毕业升学考试模拟卷数学卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省襄州区毕业升学考试模拟卷数学卷含解析

    展开
    这是一份2022届湖北省襄州区毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了 的相反数是,﹣的绝对值是,计算,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,是一个工件的三视图,则此工件的全面积是(  )

    A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2
    2.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为(  )
    A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
    3.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )

    A.30° B.40° C.50° D.60°
    4. 的相反数是(  )
    A.﹣ B. C. D.2
    5.如图,若a∥b,∠1=60°,则∠2的度数为(  )

    A.40° B.60° C.120° D.150°
    6.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
    型号(厘米)
    38
    39
    40
    41
    42
    43
    数量(件)
    25
    30
    36
    50
    28
    8
    商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
    A.平均数 B.中位数 C.众数 D.方差
    7.﹣的绝对值是(  )
    A.﹣ B.﹣ C. D.
    8.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(   )
    A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x2
    9.计算(﹣ab2)3的结果是(  )
    A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6
    10.下列计算正确的是
    A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
    11.计算3a2-a2的结果是(  )
    A.4a2 B.3a2 C.2a2 D.3
    12.正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是(  )
    A.k>1 B.k<1 C.k>﹣1 D.k<﹣1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.边长为6的正六边形外接圆半径是_____.
    14.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.

    15.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)

    16.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.

    17.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为   .
    18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.
    (1)求证:△PMN是等腰三角形;
    (2)将△ADE绕点A逆时针旋转,
    ①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;
    ②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.

    20.(6分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
    求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
    21.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
    在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.
    22.(8分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).
    (1)求点B的坐标;
    (2)求经过A、O、B三点的抛物线的函数表达式;
    (3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.

    23.(8分)如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC交于点F.
    (1)求证:FD=CD;
    (2)若AE=8,tan∠E=,求⊙O的半径.

    24.(10分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.

    25.(10分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.
    (1)求证:△ADC≌△FDB;
    (2)求证:
    (3)判断△ECG的形状,并证明你的结论.

    26.(12分)如图,,,,求证:。

    27.(12分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
    (1)求证:四边形ABEF是平行四边形;
    (2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.
    【详解】
    圆锥的底面圆的直径为12cm,高为8cm,
    所以圆锥的母线长==10,
    所以此工件的全面积=π×62+×2π×6×10=96π(cm2).
    故答案选C.
    【点睛】
    本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.
    2、A
    【解析】
    根据科学记数法的表示方法解答.
    【详解】
    解:把这个数用科学记数法表示为.
    故选:.
    【点睛】
    此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
    3、D
    【解析】
    如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.

    4、A
    【解析】
    分析:
    根据相反数的定义结合实数的性质进行分析判断即可.
    详解:
    的相反数是.
    故选A.
    点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键.
    5、C
    【解析】
    如图:

    ∵∠1=60°,
    ∴∠3=∠1=60°,
    又∵a∥b,
    ∴∠2+∠3=180°,
    ∴∠2=120°,
    故选C.
    点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.
    6、B
    【解析】
    分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
    详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
    故选:C.
    点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    7、C
    【解析】
    根据负数的绝对值是它的相反数,可得答案.
    【详解】
    │-│=,A错误;
    │-│=,B错误;││=,D错误;
    ││=,故选C.
    【点睛】
    本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.
    8、D
    【解析】
    分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:
    A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;
    B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;
    C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;
    D、y=3x2的图象平移不能得到y=2x2,故本选项正确.
    故选D.
    9、D
    【解析】
    根据积的乘方与幂的乘方计算可得.
    【详解】
    解:(﹣ab2)3=﹣a3b6,
    故选D.
    【点睛】
    本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算
    法则.
    10、B
    【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
    【详解】A. a2·a2=a4 ,故A选项错误;
    B. (-a2)3=-a6 ,正确;
    C. 3a2-6a2=-3a2 ,故C选项错误;
    D. (a-2)2=a2-4a+4,故D选项错误,
    故选B.
    【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
    11、C
    【解析】
    【分析】根据合并同类项法则进行计算即可得.
    【详解】3a2-a2
    =(3-1)a2
    =2a2,
    故选C.
    【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.
    12、D
    【解析】
    根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.
    【详解】
    解:∵正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,
    ∴k+1<0,
    解得,k<-1;
    故选D.
    【点睛】
    本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、6
    【解析】
    根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.
    【详解】
    解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,
    ∴边长为6的正六边形外接圆半径是6,故答案为:6.
    【点睛】
    本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键.
    14、2
    【解析】
    连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.
    【详解】
    解:如图,连接PB、PC,
    由二次函数的性质,OB=PB,PC=AC,
    ∵△ODA是等边三角形,
    ∴∠AOD=∠OAD=60°,
    ∴△POB和△ACP是等边三角形,
    ∵A(4,0),
    ∴OA=4,
    ∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×=2,
    即两个二次函数的最大值之和等于2.
    故答案为2.

    【点睛】
    本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.
    15、1.
    【解析】
    试题解析:在RtΔABC中,sin34°=
    ∴AC=AB×sin34°=500×0.56=1米.
    故答案为1.
    16、64°
    【解析】
    解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.
    点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.
    17、1
    【解析】
    试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.
    解:由m2﹣2m﹣1=0得m2﹣2m=1,
    所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.
    故答案为1.
    考点:代数式求值.
    18、6n+1.
    【解析】
    寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:
    第1个图形有8根火柴棒,
    第1个图形有14=6×1+8根火柴棒,
    第3个图形有10=6×1+8根火柴棒,
    ……,
    第n个图形有6n+1根火柴棒.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)见解析;(2)①见解析;②.
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;
    (2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;
    ②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论
    【详解】
    (1)如图1,∵点N,P是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形;
    (2)①如图2,∵∠DAE=∠BAC,
    ∴∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE,
    ∵点M、N、P分别是线段DE、BC、CD的中点,
    ∴PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形;
    ②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,

    ∵∠BAC=∠DAE,
    ∴∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△CAE,
    ∴BD=CE,
    如图4,连接AM,

    ∵M是DE的中点,N是BC的中点,AB=AC,
    ∴A、M、N共线,且AN⊥BC,
    由勾股定理得:AN==4,
    ∵AD=AE=1,AB=AC=6,
    ∴=,∠DAE=∠BAC,
    ∴△ADE∽△AEC,
    ∴,
    ∴,
    ∴AM=,DE=,
    ∴EM=,
    如图3,Rt△ACM中,CM===,
    ∴BD=CE=CM+EM=.
    【点睛】
    此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC
    20、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
    【解析】
    (1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
    【详解】
    (1)如图,过点P作PE⊥MN,垂足为E,
    由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
    ∵PE=30海里,∴AP=60海里,
    ∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
    ∴PE=EB=30海里,
    在Rt△PEB中,BP==30≈42海里,
    故AP=60海里,BP=42(海里);

    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
    根据题意,得,
    解得x=20,
    经检验,x=20是原方程的解,
    甲船的速度为1.2x=1.2×20=24(海里/时).,
    答:甲船的速度是24海里/时,乙船的速度是20海里/时.
    【点睛】
    本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
    21、(1)答案见解析;(2)答案见解析.
    【解析】
    试题分析:(1)根据等腰直角三角形的性质即可解决问题.
    (2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.
    试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).

    (2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.

    考点:作图—应用与设计作图.
    22、 (1) B(-1.2);(2) y=;(3)见解析.
    【解析】
    (1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;
    (2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;
    (3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.
    【详解】
    (1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,

    ∵△AOB为等腰三角形,
    ∴AO=BO,
    ∵∠AOB=90°,
    ∴∠AOC+∠DOB=∠DOB+∠OBD=90°,
    ∴∠AOC=∠OBD,
    在△ACO和△ODB中

    ∴△ACO≌△ODB(AAS),
    ∵A(2,1),
    ∴OD=AC=1,BD=OC=2,
    ∴B(-1,2);
    (2)∵抛物线过O点,
    ∴可设抛物线解析式为y=ax2+bx,
    把A、B两点坐标代入可得,解得,
    ∴经过A、B、O原点的抛物线解析式为y=x2-x;
    (3)∵四边形ABOP,
    ∴可知点P在线段OA的下方,
    过P作PE∥y轴交AO于点E,如图2,

    设直线AO解析式为y=kx,
    ∵A(2,1),
    ∴k=,
    ∴直线AO解析式为y=x,
    设P点坐标为(t,t2-t),则E(t,t),
    ∴PE=t-(t2-t)=-t2+t=-(t-1)2+,
    ∴S△AOP=PE×2=PE═-(t-1)2+,
    由A(2,1)可求得OA=OB=,
    ∴S△AOB=AO•BO=,
    ∴S四边形ABOP=S△AOB+S△AOP=-(t-1)2++=,
    ∵-<0,
    ∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),
    综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-).
    【点睛】
    本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.
    23、(1)证明见解析;(2);
    【解析】
    (1)先利用切线的性质得出∠CAD+∠BAD=90°,再利用直径所对的圆周角是直角得出∠B+∠BAD=90°,从而可证明∠B=∠EAD,进而得出∠EAD=∠CAD,进而判断出△ADF≌△ADC,即可得出结论;(2)过点D作DG⊥AE,垂足为G.依据等腰三角形的性质可得到EG=AG=1,然后在Rt△GEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在Rt△ABD中,依据锐角三角函数的定义可求得AB的长,从而可求得⊙O的半径的长.
    【详解】
    (1)∵AC 是⊙O 的切线,
    ∴BA⊥AC,
    ∴∠CAD+∠BAD=90°,
    ∵AB 是⊙O 的直径,
    ∴∠ADB=90°,
    ∴∠B+∠BAD=90°,
    ∴∠CAD=∠B,
    ∵DA=DE,
    ∴∠EAD=∠E,
    又∵∠B=∠E,
    ∴∠B=∠EAD,
    ∴∠EAD=∠CAD,
    在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,
    ∴△ADF≌△ADC,
    ∴FD=CD.
    (2)如下图所示:过点D作DG⊥AE,垂足为G.

    ∵DE=AE,DG⊥AE,
    ∴EG=AG=AE=1.
    ∵tan∠E=,
    ∴=,即=,解得DG=1.
    ∴ED==2.
    ∵∠B=∠E,tan∠E=,
    ∴sin∠B=,即,解得AB=.
    ∴⊙O的半径为.
    【点睛】
    本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键.
    24、(1)见解析;(2)
    【解析】
    分析:
    (1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;
    (2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.
    详解:
    (1)如下图,连接OD.
    ∵OA=OD,
    ∴∠DAB=∠ODA,
    ∵∠CAD=∠DAB,
    ∴∠ODA=∠CAD
    ∴AC∥OD
    ∴∠C+∠ODC=180°
    ∵∠C=90°
    ∴∠ODC=90°
    ∴OD⊥CD,
    ∴CD是⊙O的切线.
    (2)如下图,连接BD,
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵AB=9,AD=6,
    ∴BD===3,
    ∵∠CAD=∠BAD,∠C=∠ADB=90°,
    ∴△ACD∽△ADB,
    ∴,
    ∴,
    ∴CD=.

    点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.
    25、(1)详见解析;(2)详见解析;(3)详见解析.
    【解析】
    (1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;
    (2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;
    (3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状.
    【详解】
    解:(1)∵AB=BC,BE平分∠ABC
    ∴BE⊥AC
    ∵CD⊥AB
    ∴∠ACD=∠ABE(同角的余角相等)
    又∵CD=BD
    ∴△ADC≌△FDB
    (2)∵AB=BC,BE平分∠ABC
    ∴AE=CE
    则CE=AC
    由(1)知:△ADC≌△FDB
    ∴AC=BF
    ∴CE=BF
    (3)△ECG为等腰直角三角形,理由如下:
    由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,
    则∠EGC=2∠CBG=∠ABC=45°,
    又∵BE⊥AC,
    故△ECG为等腰直角三角形.
    【点睛】
    本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.
    26、见解析
    【解析】
    据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.
    【详解】
    证明:∵∠1=∠2,
    ∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.
    ∵在△ABC和△AED中,

    ∴△ABC≌△AED(AAS).
    【点睛】
    此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角
    27、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
    【解析】
    (1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
    (2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
    【详解】
    (1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
    (2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
    ∵CA=CE,CB=CF,∴AE=BF.
    ∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
    【点睛】
    本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.

    相关试卷

    天津市蓟州区第三联合学区2022年毕业升学考试模拟卷数学卷含解析: 这是一份天津市蓟州区第三联合学区2022年毕业升学考试模拟卷数学卷含解析,共26页。试卷主要包含了-10-4的结果是等内容,欢迎下载使用。

    四川省巴中巴州区七校联考2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份四川省巴中巴州区七校联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了我市连续7天的最高气温为,估算的值在等内容,欢迎下载使用。

    2022年四川省巴中学市巴州区毕业升学考试模拟卷数学卷含解析: 这是一份2022年四川省巴中学市巴州区毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map