|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届湖北省黄石市协作体重点名校中考数学模试卷含解析
    立即下载
    加入资料篮
    2022届湖北省黄石市协作体重点名校中考数学模试卷含解析01
    2022届湖北省黄石市协作体重点名校中考数学模试卷含解析02
    2022届湖北省黄石市协作体重点名校中考数学模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省黄石市协作体重点名校中考数学模试卷含解析

    展开
    这是一份2022届湖北省黄石市协作体重点名校中考数学模试卷含解析,共21页。试卷主要包含了如图,一段抛物线等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列各点中,在二次函数的图象上的是( )
    A. B. C. D.
    2.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )

    A.0.2 B.0.25 C.0.4 D.0.5
    3.一、单选题
    小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是(  )
    A. B. C. D.
    4.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为(  )
    A.0.21×108 B.21×106 C.2.1×107 D.2.1×106
    5.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为(  )
    A.60 B.30 C.240 D.120
    6.若分式 有意义,则x的取值范围是
    A.x>1 B.x<1 C.x≠1 D.x≠0
    7.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为(   )

    A.4 B.﹣4 C.﹣6 D.6
    8.如图所示的几何体,上下部分均为圆柱体,其左视图是( )

    A. B. C. D.
    9.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
    A.14 B.7 C.﹣2 D.2
    10.如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )

    A.40° B.50° C.60° D.70°
    11.下列计算正确的是()
    A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x
    12.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是(  )

    A.()2016 B.()2017 C.()2016 D.()2017
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.
    14.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).
    15.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .

    16.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.
    17.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.

    18.化简的结果等于__.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
    求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
    20.(6分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.

    21.(6分)计算:解不等式组,并写出它的所有整数解.
    22.(8分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.
    (1)求证:△AEH≌△CGF;
    (2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由

    23.(8分)先化简,再求值:,其中x为方程的根.
    24.(10分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.
    求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整图象:当时,写出的取值范围.
    25.(10分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.
    (1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?
    根据题意,先填写下表,再完成本问解答:
    型号
    A型
    B型
    购进数量(盏)
    x
    _____
    购买费用(元)
    _____
    _____
    (2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
    26.(12分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是   度.若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

    27.(12分)观察下列各式:



    由此归纳出一般规律__________.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    将各选项的点逐一代入即可判断.
    【详解】
    解:当x=1时,y=-1,故点不在二次函数的图象;
    当x=2时,y=-4,故点和点不在二次函数的图象;
    当x=-2时,y=-4,故点在二次函数的图象;
    故答案为:D.
    【点睛】
    本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.
    2、B
    【解析】
    设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
    【详解】
    解:设大正方形边长为2,则小正方形边长为1,
    因为面积比是相似比的平方,
    所以大正方形面积为4,小正方形面积为1,
    则针孔扎到小正方形(阴影部分)的概率是;
    故选:B.
    【点睛】
    本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    3、C
    【解析】
    解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
    可列方程得,
    故选C.
    【点睛】
    本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
    4、D
    【解析】
    2100000=2.1×106.
    点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
    5、D
    【解析】
    由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.
    【详解】
    如图所示,

    由tanA=,
    设BC=12x,AC=5x,根据勾股定理得:AB=13x,
    由题意得:12x+5x+13x=60,
    解得:x=2,
    ∴BC=24,AC=10,
    则△ABC面积为120,
    故选D.
    【点睛】
    此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.
    6、C
    【解析】
    分式分母不为0,所以,解得.
    故选:C.
    7、C
    【解析】
    分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.
    详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),
    ∴OA1=5,
    ∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,
    ∴A1A2=A2A3=…=OA1=5,
    ∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),
    当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,
    即m=﹣1.
    故选C.
    点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.
    8、C
    【解析】
    试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
    考点:简单组合体的三视图.
    9、D
    【解析】
    解不等式得到x≥m+3,再列出关于m的不等式求解.
    【详解】
    ≤﹣1,
    m﹣1x≤﹣6,
    ﹣1x≤﹣m﹣6,
    x≥m+3,
    ∵关于x的一元一次不等式≤﹣1的解集为x≥4,
    ∴m+3=4,解得m=1.
    故选D.
    考点:不等式的解集
    10、B
    【解析】
    解:∵由作法可知直线l是线段AB的垂直平分线,
    ∴AC=BC,
    ∴∠CAB=∠CBA=25°,
    ∴∠BCM=∠CAB+∠CBA=25°+25°=50°.
    故选B.
    11、C
    【解析】
    根据合并同类项法则和去括号法则逐一判断即可得.
    【详解】
    解:A.2x2-3x2=-x2,故此选项错误;
    B.x+x=2x,故此选项错误;
    C.-(x-1)=-x+1,故此选项正确;
    D.3与x不能合并,此选项错误;
    故选C.
    【点睛】
    本题考查了整式的加减,熟练掌握运算法则是解题的关键.
    12、C
    【解析】
    利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
    解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
    ∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
    ∴D1E1=C1D1sin30°=,则B2C2===()1,
    同理可得:B3C3==()2,
    故正方形AnBnCnDn的边长是:()n﹣1.
    则正方形A2017B2017C2017D2017的边长是:()2.
    故选C.
    “点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.
    【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,
    由题意得:x+(2x+1.82)=50,
    故答案为x+(2x+1.82)=50.
    【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.
    14、甲.
    【解析】
    乙所得环数的平均数为:=5,
    S2=[+++…+]
    =[++++]
    =16.4,
    甲的方差<乙的方差,所以甲较稳定.
    故答案为甲.
    点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.
    15、1
    【解析】
    利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
    【详解】
    解:设AF=a(a<2),则F(a,2),E(2,a),
    ∴FD=DE=2−a,
    ∴S△DEF=DF•DE==,
    解得a=或a=(不合题意,舍去),
    ∴F(,2),
    把点F(,2)代入
    解得:k=1,
    故答案为1.
    【点睛】
    本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.
    16、20
    【解析】
    先求出半径为30cm且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.
    【详解】
    =40π.
    设这个圆锥形纸帽的底面半径为r.
    根据题意,得40π=2πr,
    解得r=20cm.
    故答案是:20.
    【点睛】
    解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.
    17、3.
    【解析】
    先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,AB=CD,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,
    ∴∠ADE=∠ACD,
    ∴tan∠ACD=tan∠ADE==,
    设AD=4k,CD=3k,则AC=5k,
    ∴5k=5,
    ∴k=1,
    ∴CD=AB=3,
    故答案为3.
    【点睛】
    本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.
    18、.
    【解析】
    先通分变为同分母分式,然后根据分式的减法法则计算即可.
    【详解】
    解:原式



    故答案为:.
    【点睛】
    此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1),;(2)P,.
    【解析】
    试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
    试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(1,3).
    把点A(1,3)代入反比例函数y=,
    得:3=k,
    ∴反比例函数的表达式y=,
    联立两个函数关系式成方程组得:,
    解得:,或,
    ∴点B的坐标为(3,1).
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.

    ∵点B、D关于x轴对称,点B的坐标为(3,1),
    ∴点D的坐标为(3,- 1).
    设直线AD的解析式为y=mx+n,
    把A,D两点代入得:,
    解得:,
    ∴直线AD的解析式为y=-2x+1.
    令y=-2x+1中y=0,则-2x+1=0,
    解得:x=,
    ∴点P的坐标为(,0).
    S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
    =×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
    =.
    考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
    20、这种测量方法可行,旗杆的高为21.1米.
    【解析】
    分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.
    详解:这种测量方法可行.
    理由如下:
    设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).

    所以△AGF∽△EHF.
    因为FD=1.1,GF=27+3=30,HF=3,
    所以EH=3.1﹣1.1=2,AG=x﹣1.1.
    由△AGF∽△EHF,
    得,
    即,
    所以x﹣1.1=20,
    解得x=21.1(米)
    答:旗杆的高为21.1米.
    点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.
    21、(1);(1)0,1,1.
    【解析】
    (1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果
    (1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可
    【详解】
    解:(1)原式=1﹣1× ,
    =7﹣.
    (1) ,
    解不等式①得:x≤1,
    解不等式②得:x>﹣1,
    ∴不等式组的解集是:﹣1<x≤1.
    故不等式组的整数解是:0,1,1.
    【点睛】
    此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键
    22、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.
    【解析】
    分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;
    (2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心.
    详解:(1)证明:∵四边形ABCD是正方形,
    ∴∠A=∠C=90°,AB=BC=CD=DA,
    ∵AE=BF=CG=DH,
    ∴AH=CF,
    在△AEH与△CGF中,
    AH=CF,∠A=∠C,AE=CG,
    ∴△AEH≌△CGF(SAS);
    (2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:
    连接AC、EG,交点为O;如图所示:

    ∵四边形ABCD是正方形,
    ∴AB∥CD,
    ∴∠OAE=∠OCG,
    在△AOE和△COG中,
    ∠OAE=∠OCG,∠AOE=∠COG,AE=CG,
    ∴△AOE≌△COG(AAS),
    ∴OA=OC,OE=OG,
    即O为AC的中点,
    ∵正方形的对角线互相平分,
    ∴O为对角线AC、BD的交点,即O为正方形的中心.
    点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.
    23、1
    【解析】
    先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.
    【详解】
    解:原式=.
    解得,

    ∵时,无意义,
    ∴取.
    当时,原式=.
    24、(1)点的坐标为;(2);(3)或.
    【解析】
    (1)点A在反比例函数上,轴,,求坐标;
    (2)梯形面积,求出B点坐标,将点代入 即可;
    (3)结合图象直接可求解;
    【详解】
    解:(1)∵点在的图像上,轴,.
    ∴,

    ∴点的坐标为;
    (2)∵梯形的面积是3,
    ∴,
    解得,
    ∴点的坐标为,
    把点与代入

    解得:,.
    ∴一次函数的解析式为.
    (3)由题意可知,作出函数和函数图像如下图所示:

    设函数和函数的另一个交点为E,
    联立 ,得
    点E的坐标为
    即 的函数图像要在的函数图像上面,
    可将图像分割成如下图所示:

    由图像可知所对应的自变量的取值范围为:或.
    【点睛】
    本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键.
    25、(1)30x, y,50y;(2)商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
    【解析】
    (1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;
    (2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
    【详解】
    解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得:

    解得:.
    答:应购进A型台灯75盏,B型台灯2盏.
    故答案为30x;y;50y;
    (2)设商场应购进A型台灯x盏,销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.
    ∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥2.
    ∵k=﹣5<0,y随x的增大而减小,∴x=2时,y取得最大值,为﹣5×2+1=1875(元).
    答:商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
    【点睛】
    本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.
    26、(1)50;(2)①6;②1
    【解析】
    试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
    (2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
    ②当点P与M重合时,△PBC周长的值最小,于是得到结论.
    试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
    (2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
    ②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.

    27、xn+1-1
    【解析】
    试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
    试题解析:(x﹣1)(++…x+1)=.
    故答案为.
    考点:平方差公式.

    相关试卷

    湖北省黄石市协作体重点名校2022年中考数学模拟预测试卷含解析: 这是一份湖北省黄石市协作体重点名校2022年中考数学模拟预测试卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,如图是测量一物体体积的过程,估计5﹣的值应在,已知等内容,欢迎下载使用。

    湖北省黄石市协作体重点名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份湖北省黄石市协作体重点名校2021-2022学年中考冲刺卷数学试题含解析,共18页。试卷主要包含了计算的结果等于等内容,欢迎下载使用。

    湖北省黄石市重点名校2022年中考数学五模试卷含解析: 这是一份湖北省黄石市重点名校2022年中考数学五模试卷含解析,共21页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map