年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届河南省郑州市河南省实验中学中考数学最后冲刺浓缩精华卷含解析

    2022届河南省郑州市河南省实验中学中考数学最后冲刺浓缩精华卷含解析第1页
    2022届河南省郑州市河南省实验中学中考数学最后冲刺浓缩精华卷含解析第2页
    2022届河南省郑州市河南省实验中学中考数学最后冲刺浓缩精华卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届河南省郑州市河南省实验中学中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022届河南省郑州市河南省实验中学中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了点P等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为(  )

    A. B. C. D.
    2.计算4+(﹣2)2×5=(  )
    A.﹣16 B.16 C.20 D.24
    3.已知点,与点关于轴对称的点的坐标是( )
    A. B. C. D.
    4.点P(1,﹣2)关于y轴对称的点的坐标是(  )
    A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)
    5.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是(  )

    A.60° B.35° C.30.5° D.30°
    6.如图是由长方体和圆柱组成的几何体,它的俯视图是(  )

    A. B. C. D.
    7.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是(  )

    A.①②③ B.②③④ C.①③④ D.①②④
    8.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
    A.1或−2 B.−或
    C. D.1
    9.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )

    A. B. C. D.1
    10.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(   )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.使分式的值为0,这时x=_____.
    12.函数y=的自变量x的取值范围为____________.
    13.若a,b互为相反数,则a2﹣b2=_____.
    14.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是_____.

    15.若,则= .
    16.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其 浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.
    17.分解因式:2a4﹣4a2+2=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)请根据图中提供的信息,回答下列问题:
    一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
    19.(5分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
    根据统计图的信息解决下列问题:

    (1)本次调查的学生有多少人?
    (2)补全上面的条形统计图;
    (3)扇形统计图中C对应的中心角度数是   ;
    (4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
    20.(8分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)

    21.(10分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:1.
    求:(1)背水坡AB的长度.
    (1)坝底BC的长度.

    22.(10分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .

    23.(12分)阅读材料:各类方程的解法
    求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
    用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

    24.(14分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.
    【详解】
    解:连接EB,

    由圆周角定理可知:∠B=90°,
    设⊙O的半径为r,
    由垂径定理可知:AC=BC=4,
    ∵CD=2,
    ∴OC=r-2,
    ∴由勾股定理可知:r2=(r-2)2+42,
    ∴r=5,
    BCE中,由勾股定理可知:CE=2,
    ∴cos∠ECB==,
    故选D.
    【点睛】
    本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.
    2、D
    【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.
    详解:4+(﹣2)2×5
    =4+4×5
    =4+20
    =24,
    故选:D.
    点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
    3、C
    【解析】
    根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
    【详解】
    解:点,与点关于轴对称的点的坐标是,
    故选:C.
    【点睛】
    本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    4、C
    【解析】
    关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),
    故选C.
    【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.
    关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;
    关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.
    5、D
    【解析】
    根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
    【详解】
    连接OB,
    ∵点B是弧的中点,
    ∴∠AOB= ∠AOC=60°,
    由圆周角定理得,∠D= ∠AOB=30°,
    故选D.

    【点睛】
    此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
    6、A
    【解析】
    分析:根据从上边看得到的图形是俯视图,可得答案.
    详解:从上边看外面是正方形,里面是没有圆心的圆,
    故选A.
    点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
    7、C
    【解析】
    解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;
    当P的横纵坐标相等时PA=PB,故②错误;
    ∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;
    连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;
    综上所述,正确的结论有①③④.故选C.

    点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.
    8、D
    【解析】
    先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
    【详解】
    ∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
    ∴对称轴是直线x=-=-1,
    ∵当x≥2时,y随x的增大而增大,
    ∴a>0,
    ∵-2≤x≤1时,y的最大值为9,
    ∴x=1时,y=a+2a+3a2+3=9,
    ∴3a2+3a-6=0,
    ∴a=1,或a=-2(不合题意舍去).
    故选D.
    【点睛】
    本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
    9、D
    【解析】
    试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.
    考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.
    10、A
    【解析】
    试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,
    ∴这个斜坡的水平距离为:=10m,
    ∴这个斜坡的坡度为:50:10=5:1.
    故选A.
    点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
    答案为1.
    考点:分式方程的解法
    12、x≥-1
    【解析】
    试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
    考点:函数自变量的取值范围.
    13、1
    【解析】
    【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.
    【详解】∵a,b互为相反数,
    ∴a+b=1,
    ∴a2﹣b2=(a+b)(a﹣b)=1,
    故答案为1.
    【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.
    14、1
    【解析】
    分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
    解答:

    解:如图,连接BM,
    ∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.
    故答案为1.
    点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.
    15、1.
    【解析】
    试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
    考点:二次根式有意义的条件.
    16、
    【解析】
    科学记数法的表示形式为ax10n的形式,其中1≤lal1时,n是正数;当原数的绝对值

    相关试卷

    河南省南阳内乡县联考2022年中考数学最后冲刺浓缩精华卷含解析:

    这是一份河南省南阳内乡县联考2022年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了下列各式中,计算正确的是,的绝对值是等内容,欢迎下载使用。

    2022年江苏省盐城市东台实验中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年江苏省盐城市东台实验中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列解方程去分母正确的是等内容,欢迎下载使用。

    2022年河南省新密市重点达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年河南省新密市重点达标名校中考数学最后冲刺浓缩精华卷含解析,共24页。试卷主要包含了已知等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map