|试卷下载
搜索
    上传资料 赚现金
    2022届北京市高级中学等校中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届北京市高级中学等校中考适应性考试数学试题含解析01
    2022届北京市高级中学等校中考适应性考试数学试题含解析02
    2022届北京市高级中学等校中考适应性考试数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届北京市高级中学等校中考适应性考试数学试题含解析

    展开
    这是一份2022届北京市高级中学等校中考适应性考试数学试题含解析,共20页。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )
    A.2.8×105 B.2.8×106 C.28×105 D.0.28×107
    2.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )

    A.70° B.50° C.40° D.35°
    3.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为(  )
    A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
    4.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为(  )
    A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣5
    5.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )

    A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
    6.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )
    A.0.13×105 B.1.3×104 C.1.3×105 D.13×103
    7.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
    A.x1=1,x2=-1 B.x1=1,x2=2
    C.x1=1,x2=0 D.x1=1,x2=3
    8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是(  )

    A.x>﹣2 B.x>0 C.x>1 D.x<1
    9.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
    A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6
    10.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )

    A.31 B.35 C.40 D.50
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.

    12.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.

    13.如图,菱形的边,,是上一点,,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为__________.

    14.若关于x的函数与x轴仅有一个公共点,则实数k的值为 .
    15.已知点A,B的坐标分别为(﹣2,3)、(1,﹣2),将线段AB平移,得到线段A′B′,其中点A与点A′对应,点B与点B′对应,若点A′的坐标为(2,﹣3),则点B′的坐标为________.
    16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.

    17.比较大小: .(填“>”,“<”或“=”)
    三、解答题(共7小题,满分69分)
    18.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
    操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;
    ②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是 .猜想论证
    当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究
    已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长
    19.(5分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.

    20.(8分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
    (1)求证:EB=GD;
    (2)若AB=5,AG=2,求EB的长.

    21.(10分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.
    (1)求抛物线解析式;
    (2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;
    (3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.

    22.(10分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.
    (1)求抛物线的函数表达式;
    (2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;
    (3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;
    (4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.

    23.(12分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:

    (1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;
    (2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;
    (3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?
    24.(14分)(1)解方程:=0;
    (2)解不等式组 ,并把所得解集表示在数轴上.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
    详解:280万这个数用科学记数法可以表示为
    故选B.
    点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
    2、B
    【解析】
    分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
    详解:∵OE是∠BOC的平分线,∠BOC=80°,
    ∴∠COE=∠BOC=×80°=40°,
    ∵OD⊥OE
    ∴∠DOE=90°,
    ∴∠DOC=∠DOE-∠COE=90°-40°=50°,
    ∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
    故选B.
    点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
    3、A
    【解析】
    根据科学记数法的表示方法解答.
    【详解】
    解:把这个数用科学记数法表示为.
    故选:.
    【点睛】
    此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
    4、B
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.000 0025=2.5×10﹣6;
    故选B.
    【点睛】
    本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    5、D
    【解析】
    分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
    详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
    故选D.
    点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
    6、B
    【解析】
    试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将13000用科学记数法表示为:1.3×1.
    故选B.
    考点:科学记数法—表示较大的数
    7、B
    【解析】
    试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
    ∴.∴.故选B.
    8、C
    【解析】
    试题分析:当x>1时,x+b>kx+4,
    即不等式x+b>kx+4的解集为x>1.
    故选C.
    考点:一次函数与一元一次不等式.
    9、D
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
    【详解】
    解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.
    故选D.
    10、C
    【解析】
    根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.
    【详解】
    解:∵图1中棋子有5=1+2+1×2个,
    图2中棋子有10=1+2+3+2×2个,
    图3中棋子有16=1+2+3+4+3×2个,

    ∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,
    故选C.
    【点睛】
    本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.

    二、填空题(共7小题,每小题3分,满分21分)
    11、5
    【解析】
    本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
    【详解】
    解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
    连接OC,交AB于D点.连接OA.

    ∵尺的对边平行,光盘与外边缘相切,
    ∴OC⊥AB.
    ∴AD=4cm.
    设半径为Rcm,则R2=42+(R-2)2,
    解得R=5,
    ∴该光盘的半径是5cm.
    故答案为5
    【点睛】
    此题考查了切线的性质及垂径定理,建立数学模型是关键.
    12、1.
    【解析】
    根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.
    【详解】
    ∵双曲线y=与正比例函数y=kx的图象交于A,B两点,
    ∴点A与点B关于原点对称,∴S△BOC=S△AOC,
    ∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.
    故答案为1.
    13、
    【解析】
    如图所示,过点作,交于点.

    在菱形中,
    ∵,且,所以为等边三角形,

    根据“等腰三角形三线合一”可得
    ,因为,所以.
    在中,根据勾股定理可得,.
    因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为.
    所以,所以,所以.
    点睛:A′为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A′点在以P为圆心、AP为半径的圆上,当C、A′、P在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.
    14、0或-1。
    【解析】由于没有交待是二次函数,故应分两种情况:
    当k=0时,函数是一次函数,与x轴仅有一个公共点。
    当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。
    综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1。
    15、(5,﹣8)
    【解析】
    各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6即为点B′的坐标.
    【详解】
    由A(-2,3)的对应点A′的坐标为(2,-13),
    坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,
    ∴点B′的横坐标为1+4=5;纵坐标为-2-6=-8;
    即所求点B′的坐标为(5,-8).
    故答案为(5,-8)
    【点睛】
    此题主要考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
    16、-6
    【解析】
    因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:
    ,解得
    17、>
    【解析】
    试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.
    考点:二次根式的大小比较

    三、解答题(共7小题,满分69分)
    18、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.
    【解析】
    (1)①由旋转可知:AC=DC,
    ∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.
    ∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.
    ②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.

    由①可知:△ADC是等边三角形, DE∥AC,∴DN=CF,DN=EM.
    ∴CF=EM.
    ∵∠C=90°,∠B =30°
    ∴AB=1AC.
    又∵AD=AC
    ∴BD=AC.

    ∴.
    (1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
    ∵△DEC是由△ABC绕点C旋转得到,
    ∴BC=CE,AC=CD,
    ∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
    ∴∠ACN=∠DCM,
    ∵在△ACN和△DCM中, ,
    ∴△ACN≌△DCM(AAS),
    ∴AN=DM,
    ∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
    即S1=S1;
    (3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
    所以BE=DF1,且BE、DF1上的高相等,
    此时S△DCF1=S△BDE;
    过点D作DF1⊥BD,
    ∵∠ABC=20°,F1D∥BE,
    ∴∠F1F1D=∠ABC=20°,
    ∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
    ∴∠F1DF1=∠ABC=20°,
    ∴△DF1F1是等边三角形,
    ∴DF1=DF1,过点D作DG⊥BC于G,
    ∵BD=CD,∠ABC=20°,点D是角平分线上一点,
    ∴∠DBC=∠DCB=×20°=30°,BG=BC=,
    ∴BD=3
    ∴∠CDF1=180°-∠BCD=180°-30°=150°,
    ∠CDF1=320°-150°-20°=150°,
    ∴∠CDF1=∠CDF1,
    ∵在△CDF1和△CDF1中,

    ∴△CDF1≌△CDF1(SAS),
    ∴点F1也是所求的点,
    ∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
    ∴∠DBC=∠BDE=∠ABD=×20°=30°,
    又∵BD=3,
    ∴BE=×3÷cos30°=3,
    ∴BF1=3,BF1=BF1+F1F1=3+3=2,
    故BF的长为3或2.

    19、证明见解析.
    【解析】
    试题分析:由可得则可证明,因此可得
    试题解析:即,在和中,
    考点:三角形全等的判定.
    20、(1)证明见解析;(2) ;
    【解析】
    (1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5,根据勾股定理计算即可.
    【详解】
    (1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,
    ∴∠GAD=∠EAB,
    在△GAD和△EAB中,,
    ∴△GAD≌△EAB,
    ∴EB=GD;
    (2)∵四边形ABCD是正方形,AB=5,
    ∴BD⊥AC,AC=BD=5,
    ∴∠DOG=90°,OA=OD=BD=,
    ∵AG=2 ,
    ∴OG=OA+AG=,
    由勾股定理得,GD==,
    ∴EB=.
    【点睛】
    本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.
    21、 (1) 抛物线解析式为y=﹣;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2(﹣ ,﹣)或E3( ,﹣)或E4(,﹣).
    【解析】
    (1)将点A、C坐标代入抛物线解析式求解可得;
    (2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;
    (3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.
    【详解】
    (1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;
    (2)如图1.
    ∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.
    又∵DC=DE,∴△COD≌△DHE,∴DH=OC.
    又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;

    (3)如图2,设点D的坐标为(t,0).
    ∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:
    ①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);
    ②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);

    综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.
    22、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.
    【解析】
    (1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;
    (2)OC∥DF,则 即可求解;
    (3)由S△ACE=S△AME﹣S△CME即可求解;
    (4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.
    【详解】
    (1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,
    即: 解得:
    故函数的表达式为: ①;
    (2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,

    ∵OC∥DF,∴OF=5OA=5,
    故点D的坐标为(﹣5,6),
    将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:
    即直线AD的表达式为:y=﹣x+1,
    (3)设点E坐标为 则点M坐标为


    ∵故S△ACE有最大值,
    当x=﹣2时,最大值为;
    (4)存在,理由:
    ①当AP为平行四边形的一条边时,如下图,

    设点D的坐标为
    将点A向左平移2个单位、向上平移4个单位到达点P的位置,
    同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,
    则点Q的坐标为
    将点Q的坐标代入①式并解得:
    ②当AP为平行四边形的对角线时,如下图,

    设点Q坐标为点D的坐标为(m,n),
    AP中点的坐标为(0,2),该点也是DQ的中点,
    则: 即:
    将点D坐标代入①式并解得:
    故点D的横坐标为:或或.
    【点睛】
    本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.
    23、(1)60人;(2)144°,补全图形见解析;(3)15万人.
    【解析】
    (1)用B景点人数除以其所占百分比可得;
    (2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;
    (3)用总人数乘以样本中D景点人数所占比例
    【详解】
    (1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;
    (2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,
    补全图形如下:

    (3)估计选择去景点D旅游的人数为90×=15(万人).
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、(1)x=;(2)x>3;数轴见解析;
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
    解得:
    检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
    所以原方程的解是;
    (2) ,
    ∵解不等式①得:x>1,
    解不等式②得:x>3,
    ∴不等式组的解集为x>3,
    在数轴上表示为:.
    【点睛】
    本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.

    相关试卷

    北京市西城区名校2021-2022学年中考适应性考试数学试题含解析: 这是一份北京市西城区名校2021-2022学年中考适应性考试数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    北京市密云区冯家峪中学2021-2022学年中考适应性考试数学试题含解析: 这是一份北京市密云区冯家峪中学2021-2022学年中考适应性考试数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,化简等内容,欢迎下载使用。

    2022年武汉武昌区五校联考中考适应性考试数学试题含解析: 这是一份2022年武汉武昌区五校联考中考适应性考试数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map