2022届广西省崇左市天等县中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为( )
A.4 B.﹣4 C.3 D.﹣3
2.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是( )
A.2 B. C. D.
3.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是( )
A.BC=CD B.AD∥BC
C.AD=BC D.点A与点C关于BD对称
4.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
A. B. C. D.
5.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )
A. B. C. D.
6.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )
A. B. C. D.
7.下列说法正确的是( )
A.2a2b与–2b2a的和为0
B.的系数是,次数是4次
C.2x2y–3y2–1是3次3项式
D.x2y3与– 是同类项
8.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )
A.1 B. C. D.
9.方程x2﹣kx+1=0有两个相等的实数根,则k的值是( )
A.2 B.﹣2 C.±2 D.0
10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 ( )
A.2 B.2 C.3 D.
二、填空题(共7小题,每小题3分,满分21分)
11.从-5,-,-,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为______.
12.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
13.2的平方根是_________.
14.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
15.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).
16.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:
按上规律推断,S与n的关系是________________________________.
17.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .
三、解答题(共7小题,满分69分)
18.(10分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.
19.(5分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.
(1)请用列表或画树状图的方法求两数和为5的概率;
(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?
20.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.
21.(10分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).
(1)在,,中,正方形ABCD的“关联点”有_____;
(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
22.(10分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:
请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人.
23.(12分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).
24.(14分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据一元二次方程根与系数的关系和整体代入思想即可得解.
【详解】
∵x1,x2是关于x的方程x2+bx﹣3=0的两根,
∴x1+x2=﹣b,x1x2=﹣3,
∴x1+x2﹣3x1x2=﹣b+9=5,
解得b=4.
故选A.
【点睛】
本题主要考查一元二次方程的根与系数的关系(韦达定理),
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.
2、C
【解析】
当⊙C与AD相切时,△ABE面积最大,
连接CD,
则∠CDA=90°,
∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
∴CD=1,AC=2+1=3,
∴AD==2,
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,
∴
即,∴OE=,
∴BE=OB+OE=2+
∴S△ABE=
BE?OA=×(2+)×2=2+
故答案为C.
3、A
【解析】
由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.
【详解】
∵BD是∠ABC的角平分线,
∴∠ABD=∠CBD,
又∵DC∥AB,
∴∠ABD=∠CDB,
∴∠CBD=∠CDB,
∴BC=CD.
故选A.
【点睛】
此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.
4、C
【解析】
连接CD,交MN于E,
∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE.∴CD=2CE.
∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
∴.
∵在△CMN中,∠C=90°,MC=6,NC=,∴
∴.
∴.故选C.
5、C
【解析】
A、B、D不是该几何体的视图,C是主视图,故选C.
【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.
6、D
【解析】
画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
【详解】
画树状图如下:
一共有20种情况,其中两个球中至少有一个红球的有14种情况,
因此两个球中至少有一个红球的概率是:.
故选:D.
【点睛】
此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
7、C
【解析】
根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.
【详解】
A、2a2b与-2b2a不是同类项,不能合并,此选项错误;
B、πa2b的系数是π,次数是3次,此选项错误;
C、2x2y-3y2-1是3次3项式,此选项正确;
D、x2y3与﹣相同字母的次数不同,不是同类项,此选项错误;
故选C.
【点睛】
本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.
8、C
【解析】
连接AE,OD,OE.
∵AB是直径, ∴∠AEB=90°.
又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.
∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.
又∵点E为BC的中点,∠AED=90°,∴AB=AC.
∴△ABC是等边三角形,
∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.
∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.
∴阴影部分的面积=.故选C.
9、C
【解析】
根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.
【详解】
∵方程x2﹣kx+1=0有两个相等的实数根,
∴△=(﹣k)2﹣4×1×1=0,
解得:k=±2,
故选C.
【点睛】
本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.
10、A
【解析】
连接BD,交AC于O,
∵正方形ABCD,
∴OD=OB,AC⊥BD,
∴D和B关于AC对称,
则BE交于AC的点是P点,此时PD+PE最小,
∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
∴此时PD+PE最小,
此时PD+PE=BE,
∵正方形的面积是12,等边三角形ABE,
∴BE=AB=,
即最小值是2,
故选A.
【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:
【详解】
这七个数中有两个负整数:-5,-1
所以,随机抽取一个数,恰好为负整数的概率是:
故答案为
【点睛】
本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.
12、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
【点睛】
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
13、
【解析】
直接根据平方根的定义求解即可(需注意一个正数有两个平方根).
【详解】
解:2的平方根是故答案为.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
14、
【解析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC=AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE为⊙O的直径,
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC=.
故答案是:.
【点睛】
考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
15、4﹣π
【解析】
由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角边AC与BC的长,继而求得△ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案.
【详解】
解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,
∴AC=BC=AB•sin45°=AB=2,
∴S△ABC=AC•BC=4,
∵点D为AB的中点,
∴AD=BD=AB=2,
∴S扇形EAD=S扇形FBD=×π×22=π,
∴S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.
故答案为:4﹣π.
【点睛】
此题考查了等腰直角三角形的性质以及扇形的面积.注意S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD.
16、S=1n-1
【解析】
观察可得,n=2时,S=1;
n=3时,S=1+(3-2)×1=12;
n=4时,S=1+(4-2)×1=18;
…;
所以,S与n的关系是:S=1+(n-2)×1=1n-1.
故答案为S=1n-1.
【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
17、.
【解析】
试题分析:画树状图为:
共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.
考点:列表法与树状图法.
三、解答题(共7小题,满分69分)
18、小王在这两年春节收到的年平均增长率是
【解析】
增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.
【详解】
解:设小王在这两年春节收到的红包的年平均增长率是.
依题意得:
解得(舍去).
答:小王在这两年春节收到的年平均增长率是
【点睛】
本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.
19、(1)详见解析;(2)4分.
【解析】
(1)根据题意用列表法求出答案;
(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.
【详解】
(1)列表如下:
由列表可得:P(数字之和为5)=,
(2)因为P(甲胜)=,P(乙胜)=,∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷3=4分.
【点睛】
本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.
20、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.
【解析】
试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;
(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.
(1)把x=-1代入得1+m-2=1,解得m=1
∴2--2=1.
∴
∴另一根是2;
(2)∵,
∴方程①有两个不相等的实数根.
考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程
点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根
21、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).
【解析】
(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;
(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;
(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;
【详解】
(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),
观察图象可知:正方形ABCD的“关联点”为P2,P3;
(2)作正方形ABCD的内切圆和外接圆,
∴OF=1,,.
∵E是正方形ABCD的“关联点”,
∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),
∵点E在直线上,
∴点E在线段FG上.
分别作FF’⊥x轴,GG’⊥x轴,
∵OF=1,,
∴,.
∴.
根据对称性,可以得出.
∴或.
(3)∵、N(0,1),
∴,ON=1.
∴∠OMN=60°.
∵线段MN上的每一个点都是正方形ABCD
的“关联点”,
①MN与小⊙Q相切于点F,如图3中,
∵QF=1,∠OMN=60°,
∴.
∵,
∴.
∴.
②M落在大⊙Q上,如图4中,
∵,,
∴.
∴.
综上:.
【点睛】
本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.
22、(1)图形见解析;(2)1;(3)1.
【解析】
(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;
(2)根据众数的定义求解可得;
(3)用总人数乘以样本中D和E人数占总人数的比例即可得.
【详解】
解:(1)∵被调查的总人数为20÷20%=100(人),
则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),
补全图形如下:
(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,
故答案为1;
(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000× =1(人),
故答案为1.
【点睛】
此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.
23、5.7米.
【解析】
试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
试题解析:解:如答图,过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6.
在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,
∵DH=1.5,∴CD=+1.5.
在Rt△CDE中,∵∠CED=60°,∴CE=(米).
答:拉线CE的长约为5.7米.
考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.
24、(1)y=-2x+31,(2)20≤x≤1
【解析】
试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
试题解析:
(1)设y与x的函数关系式为y=kx+b,根据题意,得:
解得:
∴y与x的函数解析式为y=-2x+31,
(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
∴自变量x的取值范围是20≤x≤1.
2022-2023学年广西省崇左市中考数学专项提升仿真模拟试题(一模二模)含解析: 这是一份2022-2023学年广西省崇左市中考数学专项提升仿真模拟试题(一模二模)含解析,共53页。试卷主要包含了选一选,解 答 题等内容,欢迎下载使用。
广西省崇左市天等县重点中学2022年中考考前最后一卷数学试卷含解析: 这是一份广西省崇左市天等县重点中学2022年中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了下列计算正确的是,2018的相反数是等内容,欢迎下载使用。
广西省防城港市名校2022年中考数学最后一模试卷含解析: 这是一份广西省防城港市名校2022年中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中是必然事件的是,若=1,则符合条件的m有等内容,欢迎下载使用。