2022届福建省武夷山市中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=( )
A.3 B.4 C.5 D.6
2.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()
A.30° B.40°
C.60° D.70°
3.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )
A. B. C. D.
4.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )
A.0.1 B.0.2
C.0.3 D.0.4
5.已知a,b为两个连续的整数,且a< A.7 B.8 C.9 D.10
6.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )
A. B. C. D.
7.下列运算中,正确的是( )
A.(ab2)2=a2b4 B.a2+a2=2a4 C.a2•a3=a6 D.a6÷a3=a2
8.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( )
A.20 B.25 C.30 D.35
9.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )
A. B. C. D.
10.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )
A.0.6×1010 B.0.6×1011 C.6×1010 D.6×1011
11.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
12.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在中,,,点分别是边的中点,则的周长是__________.
14.函数中,自变量的取值范围是______.
15.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.
16.化简: =____.
17.因式分解:=___.
18.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
20.(6分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:
根据以上统计图,解答下列问题:本次接受调查的市民共有 人;扇形统计图中,扇形B的圆心角度数是 ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
21.(6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
22.(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.
滑行时间x/s
0
1
2
3
…
滑行距离y/m
0
4
12
24
…
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.
23.(8分)计算:.
24.(10分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)
25.(10分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.
(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?
(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
26.(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
27.(12分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:
20
21
19
16
27
18
31
29
21
22
25
20
19
22
35
33
19
17
18
29
18
35
22
15
18
18
31
31
19
22
整理上面数据,得到条形统计图:
样本数据的平均数、众数、中位数如下表所示:
统计量
平均数
众数
中位数
数值
23
m
21
根据以上信息,解答下列问题:上表中众数m的值为 ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.
【详解】
∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故选D.
2、A
【解析】
∵AB∥CD,∠A=70°,
∴∠1=∠A=70°,
∵∠1=∠C+∠E,∠C=40°,
∴∠E=∠1﹣∠C=70°﹣40°=30°.
故选A.
3、B
【解析】
将A、B、C、D分别展开,能和原图相对应的即为正确答案:
【详解】
A、展开得到,不能和原图相对应,故本选项错误;
B、展开得到,能和原图相对,故本选项正确;
C、展开得到,不能和原图相对应,故本选项错误;
D、展开得到,不能和原图相对应,故本选项错误.
故选B.
4、B
【解析】
∵在5.5~6.5组别的频数是8,总数是40,
∴=0.1.
故选B.
5、A
【解析】
∵9<11<16,
∴,
即,
∵a,b为两个连续的整数,且,
∴a=3,b=4,
∴a+b=7,
故选A.
6、C
【解析】
连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
【详解】
解:连接OD,
在Rt△OCD中,OC=OD=2,
∴∠ODC=30°,CD=
∴∠COD=60°,
∴阴影部分的面积= ,
故选:C.
【点睛】
本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.
7、A
【解析】
直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.
【详解】
解:A、(ab2)2=a2b4,故此选项正确;
B、a2+a2=2a2,故此选项错误;
C、a2•a3=a5,故此选项错误;
D、a6÷a3=a3,故此选项错误;
故选:A.
【点睛】
此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.
8、B
【解析】
设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:
,,
∴,
∴当时,(亿),
∵400-375=25,
∴该行可贷款总量减少了25亿.
故选B.
9、C
【解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
【详解】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:
A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;
B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;
C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;
D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.
故选C
【点睛】
考核知识点:正方体的表面展开图.
10、C
【解析】
解:将60000000000用科学记数法表示为:6×1.
故选C.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的一般形式是解题关键.
11、C
【解析】
分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
详解:将三个小区分别记为A、B、C,
列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为.
故选:C.
点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
12、B
【解析】
根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
【详解】
解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
∵点D、E、F分别是边AB、AC、BC的中点,
∴DE=BC,DF=AC,EF=AB,
∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
故答案为:6.
【点睛】
本题考查了勾股定理和三角形中位线定理.
14、
【解析】
根据分式有意义的条件是分母不为2;分析原函数式可得关系式x−1≠2,解得答案.
【详解】
根据题意得x−1≠2,
解得:x≠1;
故答案为:x≠1.
【点睛】
本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为2.
15、
【解析】
试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.
16、
【解析】
先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.
【详解】
原式,
故答案为
【点睛】
本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.
17、
【解析】
分析:先提公因式,再利用平方差公式因式分解即可.
详解:a2(a-b)-4(a-b)
=(a-b)(a2-4)
=(a-b)(a-2)(a+2),
故答案为:(a-b)(a-2)(a+2).
点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.
18、(-2,-2)
【解析】
先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
【详解】
“卒”的坐标为(﹣2,﹣2),
故答案是:(﹣2,﹣2).
【点睛】
考查了坐标确定位置,关键是正确确定原点位置.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.
【解析】
(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;
(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.
【详解】
解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,
当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),
将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
解得:,则一次函数解析式为y=x+2;
(2)由题意知BC=2,则△ACB的面积=×2×1=1.
【点睛】
本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.
20、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.
【解析】
(1)根据D组人数以及百分比计算即可.
(2)根据圆心角度数=360°×百分比计算即可.
(3)求出A,C两组人数画出条形图即可.
(4)利用样本估计总体的思想解决问题即可.
【详解】
(1)本次接受调查的市民共有:50÷25%=1(人),
故答案为1.
(2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;
故答案为:43.2°
(3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).
条形统计图如图所示:
(4)15×40%=6(万人).
答:估计乘公交车上班的人数为6万人.
【点睛】
本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
22、(1)20s;(2)
【解析】
(1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;
(2)根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:(1)∵该抛物线过点(0,0),
∴设抛物线解析式为y=ax2+bx,
将(1,4)、(2,12)代入,得:
,
解得:,
所以抛物线的解析式为y=2x2+2x,
当y=840时,2x2+2x=840,
解得:x=20(负值舍去),
即他需要20s才能到达终点;
(2)∵y=2x2+2x=2(x+)2﹣,
∴向左平移2个单位,再向下平移5个单位后函数解析式为y=2(x+2+)2﹣﹣5=2(x+)2﹣.
【点睛】
本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.
23、
【解析】
【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.
【详解】原式=
=
=.
【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.
24、 (1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.
【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
【详解】
(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=,BC=80千米,
∴CD=BC•sin30°=80×=40(千米),
AC=(千米),
AC+BC=80+(千米),
答:开通隧道前,汽车从A地到B地要走(80+)千米;
(2)∵cos30°=,BC=80(千米),
∴BD=BC•cos30°=80×(千米),
∵tan45°=,CD=40(千米),
∴AD=(千米),
∴AB=AD+BD=40+(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).
答:汽车从A地到B地比原来少走的路程为 [40+40]千米.
【点睛】
本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
25、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【解析】
试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;
(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.
试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,
根据题意,2000x+2500(30-x)=68000,
解得x=14,
∴30-x=16,
答:种植A种生姜14亩,种植B种生姜16亩;
(2)由题意得,x≥(30-x),解得x≥10,
设全部收购该基地生姜的年总收入为y元,则
y=8×2000x+7×2500(30-x)=-1500x+525000,
∵y随x的增大而减小,∴当x=10时,y有最大值,
此时,30-x=20,y的最大值为510000元,
答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.
26、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.
【解析】
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵,
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,
又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.
27、 (1)18;(2)中位数;(3)100名.
【解析】
【分析】(1)根据条形统计图中的数据可以得到m的值;
(2)根据题意可知应选择中位数比较合适;
(3)根据统计图中的数据可以计该部门生产能手的人数.
【详解】(1)由图可得,
众数m的值为18,
故答案为:18;
(2)由题意可得,
如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,
故答案为:中位数;
(3)300×=100(名),
答:该部门生产能手有100名工人.
【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.
2023年福建省南安实验中学中考二模数学试题(含解析): 这是一份2023年福建省南安实验中学中考二模数学试题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年福建省福州十九中中考数学二模试卷(含解析): 这是一份2023年福建省福州十九中中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年福建省厦门二中中考数学二模试卷-(含解析): 这是一份2022年福建省厦门二中中考数学二模试卷-(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

