2022届福建省德化三中重点中学中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如果菱形的一边长是8,那么它的周长是( )
A.16 B.32 C.16 D.32
2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )
A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109
3.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是( )
A. B. C. D.
4.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为( )
A.8 B.6 C.12 D.10
5.计算(-ab2)3÷(-ab)2的结果是( )
A.ab4 B.-ab4 C.ab3 D.-ab3
6.cos45°的值是( )
A. B. C. D.1
7.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为( )
A.100° B.80° C.50° D.20°
8.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为( )
A.8 B.10 C.12 D.14
9.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
10.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,二次函数y=a(x﹣2)2+k(a>0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,﹣2),点P为x轴上任意一点,连结PB、PC.则△PBC的面积为_____.
12.计算:=________.
13.函数y=+的自变量x的取值范围是_____.
14.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 .
15.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.
16.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.
17.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是_____.
三、解答题(共7小题,满分69分)
18.(10分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.
19.(5分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).
(1)∠DCB= 度,当点G在四边形ABCD的边上时,x= ;
(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;
(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.
20.(8分)先化简,再求值:()÷,其中a=+1.
21.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.
22.(10分)解方程:2(x-3)=3x(x-3).
23.(12分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:
(发现)(1)的长度为多少;
(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.
(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.
(拓展)当与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.
24.(14分)如图,在等腰直角△ABC中,∠C是直角,点A在直线MN上,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.
(1)如图1,当C,B两点均在直线MN的上方时,
①直接写出线段AE,BF与CE的数量关系.
②猜测线段AF,BF与CE的数量关系,不必写出证明过程.
(2)将等腰直角△ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程.
(3)将等腰直角△ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据菱形的四边相等,可得周长
【详解】
菱形的四边相等
∴菱形的周长=4×8=32
故选B.
【点睛】
本题考查了菱形的性质,并灵活掌握及运用菱形的性质
2、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:数字338 600 000用科学记数法可简洁表示为3.386×108
故选:A
【点睛】
本题考查科学记数法—表示较大的数.
3、C
【解析】
利用相似三角形的性质即可判断.
【详解】
设AD=x,AE=y,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴,
∴x=9,y=12,
故选:C.
【点睛】
考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、C
【解析】
由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.
【详解】
∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,
∴PA=PB=6,AC=EC,BD=ED,
∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,
即△PCD的周长为12,
故选:C.
【点睛】
本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.
5、B
【解析】
根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,
(-ab2)3÷(-ab)2
=-a3b6÷a2b2
=-ab4,
故选B.
6、C
【解析】
本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
【详解】
cos45°= .
故选:C.
【点睛】
本题考查特殊角的三角函数值.
7、B
【解析】
解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.
点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.
8、B
【解析】
试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.
故选B.
点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.
9、A
【解析】
∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC== ,
则cosB== ,
故选A
10、B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
二、填空题(共7小题,每小题3分,满分21分)
11、4
【解析】
根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案.
【详解】
∵二次函数的对称轴为直线x=2, ∴点A的坐标为(4,0),∵点C的坐标为(0,-2),
∴点B的坐标为(4,-2), ∴BC=4,则.
【点睛】
本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键.
12、.
【解析】
根据异分母分式加减法法则计算即可.
【详解】
原式.
故答案为:.
【点睛】
本题考查了分式的加减,关键是掌握分式加减的计算法则.
13、x≥1且x≠3
【解析】
根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.
【详解】
根据二次根式和分式有意义的条件可得:
解得:且
故答案为:且
【点睛】
考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.
14、7
【解析】
试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
又∵∠B=∠C=60°,∴△ABD∽△DCE.
∴,即.
∴.
15、1
【解析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x个红球,列出方程=20%, 求得x=1.
故答案为1.
点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
16、2
【解析】
侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.
【详解】
设母线长为x,根据题意得
2πx÷2=2π×5,
解得x=1.
故答案为2.
【点睛】
本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.
17、2,3,1.
【解析】
分析:根据题意得出EF的取值范围,从而得出EF的值.
详解:∵AB=1,∠ABC=60°, ∴BD=1,
当点E和点B重合时,∠FBD=90°,∠BDC=30°,则EF=1;
当点E和点O重合时,∠DEF=30°,则△EFD为等腰三角形,则EF=FD=2,
∴EF可能的整数值为2、3、1.
点睛:本题主要考查的就是菱形的性质以及直角三角形的勾股定理,属于中等难度的题型.解决这个问题的关键就是找出当点E在何处时取到最大值和最小值,从而得出答案.
三、解答题(共7小题,满分69分)
18、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.
【解析】
试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.
试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.
考点:1.折线统计图;2.条形统计图.
19、 (1) 30;2;(2)x=1;(3)当x=时,y最大=;
【解析】
(1)如图1中,作DH⊥BC于H,则四边形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,当等边三角形△EGF的高= 时,点G在AD上,此时x=2;
(2)根据勾股定理求出的长度,根据三角函数,求出∠ADB=30°,根据中点的定义得出根据等边三角形的性质得到,即可求出x的值;
(3)图2,图3三种情形解决问题.①当2
(1)作DH⊥BC于H,则四边形ABHD是矩形.
∵AD=BH=3,BC=6,
∴CH=BC﹣BH=3,
在Rt△DHC中,CH=3,
∴
当等边三角形△EGF的高等于时,点G在AD上,此时x=2,∠DCB=30°,
故答案为30,2,
(2)如图
∵AD∥BC
∴∠A=180°﹣∠ABC=180°﹣90°=90°
在Rt△ABD中,
∴∠ADB=30°
∵G是BD的中点
∴
∵AD∥BC
∴∠ADB=∠DBC=30°
∵△GEF是等边三角形,
∴∠GFE=60°
∴∠BGF=90°
在Rt△BGF中,
∴2x=2即x=1;
(3)分两种情况:
当2<x<3,如图2
点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM
∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°
∴∠FNC=∠DCB
∴FN=FC=6﹣2x
∴GN=x﹣(6﹣2x)=3x﹣6
∵∠FNC=∠GNM=30°,∠G=60°
∴∠GMN=90°
在Rt△GNM中,
∴
∴当时,最大
当3≤x<6时,如图3,
点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP
∵∠PCE=30°,∠PEC=60°
∴∠EPC=90°
在Rt△EPC中EC=6﹣x,
对称轴为
当x<6时,y随x的增大而减小
∴当x=3时,最大
综上所述:当时,最大
【点睛】
属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.
20、,.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
【详解】
解: ()÷
=
=
=
=,
当a=+1时,原式==.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
21、(1)证明见解析;(2)阴影部分的面积为.
【解析】
(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.
【详解】
解:(1)连接OC, ∵OA=OC, ∴∠OAC=∠OCA,
∵AC平分∠BAE, ∴∠OAC=∠CAE,
∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,
∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
∵点C在圆O上,OC为圆O的半径, ∴CD是圆O的切线;
(2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12,
在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,
∴DB=OB=OC=AD=4,DO=8,
∴CD=
∴S△OCD==8, ∵∠D=30°,∠OCD=90°,
∴∠DOC=60°, ∴S扇形OBC=×π×OC2=,
∵S阴影=S△COD﹣S扇形OBC ∴S阴影=8﹣,
∴阴影部分的面积为8﹣.
22、.
【解析】
先进行移项,在利用因式分解法即可求出答案.
【详解】
,
移项得:,
整理得:,
或,
解得:或.
【点睛】
本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.
23、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析.
【解析】
发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;
(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;
探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;
拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.
【详解】
[发现]
(3)∵P(2,0),∴OP=2.
∵OA=3,∴AP=3,∴的长度为.
故答案为;
(2)设⊙P半径为r,则有r=2﹣3=3,当t=2时,如图3,点N与点A重合,∴PA=r=3,设MP与AB相交于点Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.
∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重叠部分=S△APQPQ×AQ.
即重叠部分的面积为.
[探究]
①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.
∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;
∴点P的坐标为(3,0);
②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴点P的坐标为(,0);
③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP;
∴点P的坐标为(,0);
[拓展]
t的取值范围是2<t≤3,2≤t<4,理由:
如图4,当点N运动到与点A重合时,与Rt△ABO的边有一个公共点,此时t=2;
当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t3,与Rt△ABO的边有两个公共点,∴2<t≤3.
如图6,当⊙P运动到PM与OB重合时,与Rt△ABO的边有两个公共点,此时t=2;
直到⊙P运动到点N与点O重合时,与Rt△ABO的边有一个公共点,此时t=4;
∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.
【点睛】
本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.
24、(1)①AE+BF =EC;②AF+BF=2CE;(2)AF﹣BF=2CE,证明见解析;(3)FG=.
【解析】
(1)①只要证明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;
②利用①中结论即可解决问题;
(2)首先证明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解决问题;
【详解】
解:(1)证明:①如图1,过点C做CD⊥BF,交FB的延长线于点D,
∵CE⊥MN,CD⊥BF,
∴∠CEA=∠D=90°,
∵CE⊥MN,CD⊥BF,BF⊥MN,
∴四边形CEFD为矩形,
∴∠ECD=90°,
又∵∠ACB=90°,
∴∠ACB-∠ECB=∠ECD-∠ECB,
即∠ACE=∠BCD,
又∵△ABC为等腰直角三角形,
∴AC=BC,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(AAS),
∴AE=BD,CE=CD,
又∵四边形CEFD为矩形,
∴四边形CEFD为正方形,
∴CE=EF=DF=CD,
∴AE+BF=DB+BF=DF=EC.
②由①可知:AF+BF=AE+EF+BF
=BD+EF+BF
=DF+EF
=2CE,
(2)AF-BF=2CE
图2中,过点C作CG⊥BF,交BF延长线于点G,
∵AC=BC
可得∠AEC=∠CGB,
∠ACE=∠BCG,
在△CBG和△CAE中,
,
∴△CBG≌△CAE(AAS),
∴AE=BG,
∵AF=AE+EF,
∴AF=BG+CE=BF+FG+CE=2CE+BF,
∴AF-BF=2CE;
(3)如图3,过点C做CD⊥BF,交FB的于点D,
∵AC=BC
可得∠AEC=∠CDB,
∠ACE=∠BCD,
在△CBD和△CAE中,
,
∴△CBD≌△CAE(AAS),
∴AE=BD,
∵AF=AE-EF,
∴AF=BD-CE=BF-FD-CE=BF-2CE,
∴BF-AF=2CE.
∵AF=3,BF=7,
∴CE=EF=2,AE=AF+EF=5,
∵FG∥EC,
∴,
∴,
∴FG=.
【点睛】
本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
2022年宜昌市重点中学中考数学考前最后一卷含解析: 这是一份2022年宜昌市重点中学中考数学考前最后一卷含解析,共24页。试卷主要包含了答题时请按要求用笔,估计5﹣的值应在,下列算式中,结果等于a5的是等内容,欢迎下载使用。
2022年吉林省重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年吉林省重点中学中考考前最后一卷数学试卷含解析,共22页。
2022届松原市重点中学中考数学考前最后一卷含解析: 这是一份2022届松原市重点中学中考数学考前最后一卷含解析,共24页。试卷主要包含了答题时请按要求用笔,计算6m6÷等内容,欢迎下载使用。